End-to-end performance analysis of 3D printed luminescent devices for energy conversion applications

Shomik Verma, Rachel Evans

Fall MRS

1 Dec 2023

Conventional solar devices have an efficiency limit

Solar Cell Shockley-Queisser Limit: Max efficiency = 32%

https://www.nrel.gov/grid/solar-resource/spectra.html

https://www.cleantechconcepts.com/2019/06/speeding-discovery-of-new-solar-cells-materials/

Luminescent Solar Concentrators (LSCs) can help exceed this limit

350 400 450 500 550 600 650 700 750 800 Wavelength (nm)

Image courtesy Guanpeng Lyu

Many device shapes and patterns have been investigated

Kennedy et al. ISES SWC (2007)

Viswanathan et al. 27th EU PSECE (2012)

Carbone et al. Int. J. Photoenergy (2019)

Reinders et al. IEEE Journal of PV (2017)

Albers et al. Solar Energy (2013)

3D printing of LSCs opens a new frontier

We first need accurate CAD models of 3D printed parts

We developed new ways to characterize unconventional LSC geometries

Counted rays Ignored rays

S €

L1

L2

L3

L4

Improved light mask

Predictions match experiment 45 40 35 Literature (Experiment) pvtrace 30 25 20 15

L5

L6

L7

18

pvtrace-sv

Modifications made to Daniel Farrell's pvTrace (https://github.com/danieljfarrell/pvtrace) to allow analysis of unconventional LSC geometries.

Read Online

Ray-Trace Modeling to Characterize Efficiency of Unconventional Luminescent Solar Concentrator Geometries

Shomik Verma,* Daniel J Farrell, and Rachel C. Evans*

Cite This: ACS Appl. Opt. Mater. 2023, 1, 1012–1025

OPTICAL MATERIALS

Created luminescent filament with an extruder

3D printing of luminescent parts!

Characterizing the optical efficiency of devices

Comparing experimental efficiency with predictions

Comparing different shapes

Comparing printing patterns and extrapolating

Some 3D printed geometries can outperform bulk parts!

We have developed a robust methodology for end-to-end performance analysis

- Ray tracing simulation
- Luminescent filament generation
- Optical efficiency characterization
- Future work in printing alternative 3D designs is warranted

Thanks!

pvtrace-sv

Modifications made to Daniel Farrell's pvTrace (<u>https://github.com/danieljfarrell/pvtrace</u>) to allow analysis of unconventional LSC geometries.

Read Online

Ray-Trace Modeling to Characterize Efficiency of Unconventional Luminescent Solar Concentrator Geometries

Shomik Verma,* Daniel J Farrell, and Rachel C. Evans*

Cite This: ACS Appl. Opt. Mater. 2023, 1, 1012–1025

ACS APPLIED OPTICAL MATERIALS

skverma@mit.edu