Enhancement of TPV power density with surface-engineered emitters

Shomik Verma¹, Minok Park², Sean Lubner³, Asegun Henry¹

¹Department of Mechanical Engineering, Massachusetts Institute of Technology ²Energy Technologies Area, Lawrence Berkeley National Laboratory ³Department of Mechanical Engineering, Boston University

TPV-15 Conference 3 Oct 2024

1. When does TPV power density matter?	2. How can we create high-emissivity materials?				
3. How do TPV cells perform with these emitters?	4. How long do the emitters last?				

TPV performance metrics: power density and efficiency

We can evaluate the cost of TPV with LCOE

Heating term Cell term

Power density matters when cell term dominates

Verma et al. arXiv (2024)

Po	ower density	Emissivi	Ŋ		TPV		Du	urability
Opt	ions for in	creasir	ng TPV	' pow	ver de	ensity	٢	
			Incr	ease tempe	erature		Decrease	e bandgap
			1.0					
	Emitter		<u>s</u> it			8.0 <u>si</u>		
			u.6			0.6		
	Pinc	ef	₽ Appli ≚ 0.4	cation limit	tations		Lower e	efficiency
			orma					
	TPV		2 0.2			2 0.2		
Q_{loss}		P_{out}	0.0	1000 20	000 300		1000	2000
	Base case		Ŭ	Wavelength (nn	n)	-	Wavelen	gth (nm)
1.0					1.0			
 8.0 달.			Application li	mitations	.≩ 0.8		\	
0.0 uteus			Increase view	v factor	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
zeq			Add ARC		zeq			
<u></u> 0.4			Increase emi	ssivity	E 0.4			
≥ 0.2					≥ 0.2			

(Similar eff ensures higher

light intensity \Rightarrow higher

electric intensity)

3000

2000

0.0

0

1000

Wavelength (nm)

2000

3000

0.0

0

1000

Wavelength (nm)

5

3000

Options for improving emitter emissivity

Surface engineering?

Park et al. Advanced Science (2024)

We can make any surface black

Emissivity before vs. after laser processing

Laser processed emitters and TPV power density

Park and Verma et al. Submitted (2024)

10

Durability of laser processed emitters

Park and Verma et al. Submitted (2024)

Modeling sintering to extrapolate durability testing

(Including surface diffusion + vapor pressure effects)

1. When does TPV power density matter?

2. How can we create high-emissivity materials?

3. How do TPV cells perform with these emitters?

Power density (W cm⁻²)

