Fabrication and testing of laser-blackened surfaces

Shomik Verma¹, Minok Park², Sean Lubner³, Asegun Henry¹

¹Department of Mechanical Engineering, Massachusetts Institute of Technology

²Energy Technologies Area, Lawrence Berkeley National Laboratory

³Department of Mechanical Engineering, Boston University

Fall '24 MRS | Radiation Engineering II 5 Dec 2024

1. Why do we want black surfaces?	2. How can we fabricate black surfaces?
3. How do TPV cells perform with black emitters?	4. How long do the emitters last?
	1

Black surfaces maximize radiative absorption & emission

Solar thermal collectors

Thermophotovoltaics

Power density TPV Durability

Thermophotovoltaics benefit from higher emission

Conventional black emitters have limitations

Carbon deposition

Carbon based materials

Annealed at 1500°C (100 hours)

Graphite emitter

Substrate

Surface coating

Surface engineering?

Power density Emissivity TPV Durability

Ultrafast fs laser

Laser ablation can tune emissivity

Power density Emissivity TPV Durability

We can make any surface black

Emissivity before vs. after laser processing

Laser processed emitters and TPV power density

AlGaInAs / GalnAs + Au BSR

Durability of laser processed emitters

Low-temp, long-duration, oxidizing

High-temp, short-duration, reducing

Park and Verma et al. Submitted (2024)

Modeling sintering to extrapolate durability testing

(Including surface diffusion + vapor pressure effects)

1. Why do we want black surfaces?

2. How can we create high-emissivity materials?

3. How do TPV cells perform with these emitters?

4. How long do the emitters last?

1. Why do we want black surfaces?

2. How can we create high-emissivity materials?

Questions?

3. How do TPV cells perform with these emitters?

→4. How long do the emitters last?

