Thermophotovoltaics powered by combustion for long-duration chemical energy storage

Shomik Verma, Ahmed Ghoniem, Asegun Henry

Department of Mechanical Engineering, Massachusetts Institute of Technology

SHTC-ES Conference

9 July 2025

What is thermophotovoltaics (TPV)?

20% efficiency 200 W/m²

40% efficiency 20,000 W/m²

What is thermophotovoltaics (TPV)?

2

1. What is <u>long-duration chemical energy storage</u> and how can it provide reliable electricity?	2. How can <u>thermophotovoltaics</u> be used to convert stored fuel to electricity?
3. What does a <u>prototype combustion-TPV device</u> design feature?	4. How does the prototype perform experimentally?

Chemical energy storage provides *ultra-long* duration storage for improved reliability

Because it fills in the gaps (low CF), <u>capital cost</u> must be very low

Ammonia: easy transportation and storage

Chemical ULDES Combustion - TPV Prototype Design Experimental Demonstration

Ammonia combustion challenges: NOx emissions

Gas turbines

Flameless combustion not suited for gas turbines

- Issues:
 - NH3 toxicity
 - Poor combustion characteristics
 - NOx & N2O emissions ~1000ppm >> 15ppm
- Solution:
 - Rapid mixing, and low operating temperatures
- Flameless combustion achieves these characteristics:
 - Preheated reactants + rapid mixing
 - Distributed volumetric reaction zone (no flame front)

30 ppm NOx

TPV can convert flameless combustion to electricity

Gas turbines

Issues:

- Unstable conditions (high RPM blades)
- Requires combustor redesign (preheating, recirculation, slow combustion)

Ultra-hot thermal emitter Pinc Pref

Thermophotovoltaics

• Pros:

Ploss

- Flexible heat source
- Solid state
- Challenges:
 - High emitter temperature (~1500C)

Au mirror

Historically low efficiency

Combustion-TPV system efficiency

Goal: use flameless combustion to power TPV for clean, reliable electricity generation

Proposed prototype combustor design to achieve flameless conditions

- Preheated reactants
- Well-mixed combustion zone
- High emitter temperature

Chemical ULDES Combustion - TPV Prototype Design **Experimental Demonstration**

Prototype design iterations

SiC grades

Nitride-bonded

Recrystallized

Reaction-bonded

Sintered SiC

Metal-ceramic interface

Compression fitting

Flange + clamping

Inlet tube geometry

and baffles

Final prototype design overview

Experimental setup for safe, efficient conversion

Exhaust cooling coil

Assembled system

Preliminary results with hydrogen combustion

5kW chemical energy input

4kW thermal power output

3.5kW absorbed by heat sink

65% thermal efficiency

160ppm NOx @ 15% O2

Expected results with ammonia and TPV

 ~100 ppm with burner geometry improvements

• 30% system efficiency, 1kW W-e output (5 W/cm2)

Looking to the future:
Optimized custom design (3D printed microchannels)
Techno-economics (CAPEX/OPEX, grid integration)

1. What is <u>long-duration chemical energy storage</u> and how can it provide reliable electricity?

2. How can <u>thermophotovoltaics</u> be used to convert stored fuel to electricity?

3. What does an efficient prototype design feature?

4. How does the prototype perform <u>experimentally</u>?

Current: 1300C wall temperature 3.5 kW heat output 160ppm NOx

Predicted:
30% system efficiency
1 kW electricity produced
100 ppm NOx

1. What is <u>long-duration chemical energy storage</u> and how can it provide reliable electricity?

2. How can <u>thermophotovoltaics</u> be used to convert stored fuel to electricity?

3. What does an efficient prototype design feature?

4. How does the prototype perform <u>experimentally?</u>

Current: 1300C wall temperature 3.5 kW heat output 160ppm NOx

Predicted: 30% system efficiency 1 kW electricity produced 100 ppm NOx