High-Absorptance, Thermally-Robust Surfaces for Receivers

Shomik Verma¹, Minok Park², Sean Lubner³, Asegun Henry¹

¹Department of Mechanical Engineering, Massachusetts Institute of Technology

²Energy Technologies Area, Lawrence Berkeley National Laboratory

³Department of Mechanical Engineering, Boston University

SHTC-ES Conference 9 July 2025

1. Why does receiver absorptance matter?	2. How can we create high-absorptance materials?
3. How do these materials perform at high temperatures?	4. How long do the absorbers last?
	1

-1

CSP receivers – solar absorption vs. IR emission

Options for improving receiver absorptance

High-absorptance materials

Coatings

Surface engineering?

Laser ablation can tune absorptance

We can make any surface black

Absorptance before vs. after laser processing

Laser processed surfaces achieve high emittance (= high absorptance) at high temperatures

Laser processed surfaces achieve high emittance (= high absorptance) at high temperatures

Photons < 1240 nm absorbed as current

Durability of laser processed absorbers in air

Low-temp, long-duration, oxidizing

Durability of laser processed absorbers in inert gas

Thermal cycling tests

Cycle 6

Cycle 10

Highest-temperature, longest-duration durability tests of structured surfaces to date

Nanoparticle sintering reduces absorptance

Nanoparticles are sintering to form a smooth surface

Can we model this to predict long-term behavior?

Modeling sintering to extrapolate durability testing

(Including surface diffusion + vapor pressure effects)

1. Why does receiver absorptance matter?

3. How do these materials perform at high temperatures?

2. How can we create high-absorptance materials?

4. How long do the absorbers last?

