Developing a numerical heat transfer model for a high-temperature
Du]{e concentrated solar thermal collector t-sel

UNIVERSITY

Thermodynamics
and Sustainable
Energy Laboratory

Shomik Verma, Nico Hotz
Thermodynamics and Sustainable Energy Laboratory, Department of Mechanical Engineering and Materials Science, Duke University

’ Tremendous researCh eﬁorts In Capturlng rid solar Mass Flow vs. Glass Temperature for Various Concentrations Mass Flow vs. Surface Temperature for Various Concentrations ° Concentrated SOIar power haS the pOtentIaI to Increase ﬂUId temperatures to
thermal energy from the sun cgenerat Cpe—————— T T T P
* 2 main areas: non-concentrated vs.

concentrated solar power (CSP)
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« Accuracy of model confirmed within ~10% when compared with historical

* Non-concentrated solar power has limits to ” i |
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» Current application: steam reforming of Mass flow (g/s) Mass flow (g/s) « Current model over-predicts outlet temperature at stagnation
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* EXperlmental SetUp consists of flat plat Preheating Hydrogen Generation Oxidation Storage Generation

collector inside an insulting vacuum * Predicted temperatures for surfaces 1, 3, 6, 8, and fluid outlet temperature
* Predict temperatures of all collector » Logarithmically scaled mass flow rates, concentrations ranging from 1 — 10

components to determine efficiency - Can see stagnation temperature and how temperature changes with flow m
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ol ) [ * Refine the model:
$ ol s * Incorporate chemical reaction of steam reforming
o -  Endothermic reaction with catalyst acts as heat sink, so model currently
l Qrat 4 oo 1 Class cover 3 ol o o 3 over-predicts temperatures of all parts of the collector
| I 9 Vacuum * Model water as the working fluid and determine temperature increase
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2 : fime o)  Testing of collector requires fabrication of new solar absorption coating
5. Fluid flow channel . . . . _ _ "
| Urad : 6. Bottom metal surface o |Left graph shows fluid outlet temperature as a function of concentration ratio e Must be able to both withstand h|gh temperatures and perform eff|C|ent|y
3 | — ' * Temperature increase starts to diminish as concentration ratio increases « Experimentally verify numerical predictions:
! .: g ﬁ:ﬁz:t?,e etal cover * Right graph shows typical outlet temperatures expected over one day » Determine best method of concentrating solar irradiance on collector
D =>; qz:: ='=>; . o Useful to determine when to Operate Collector; assumes ideal conditions e Use previ0u3|y deve|oped experimenta| methods to measure temperatures
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