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Abstract
Photovoltaics (PV) have emerged as a prominent technology to generate electricity
from sunlight. However, traditional single-junction PV cells such as silicon, thin
film PV, and perovskites suffer from an inherent efficiency limit of 33.7%. This is
primarily due to two loss mechanisms: sub-bandgap losses, where photons with
energy below the bandgap of the PV cell cannot be utilized, and thermalization
losses, where photons with excess energy above the bandgap lose their excess en-
ergy to heat. Photon conversion materials can help overcome the detailed-balance
limit by converting wavelengths of light into energies the solar cell can efficiently
absorb. The two common mechanisms for photon conversion are triplet-triplet an-
nihilation (TTA) up-conversion and singlet fission (SF) down-conversion. Several
molecules have been shown to exhibit TTA or SF, but there could be cheaper or less
complex molecules previously overlooked that would be suitable. To identify such
chromophores, high-throughput virtual screening (HTVS) of large databases is re-
quired.

Both TTA and SF involve the singlet and triplet excited states of molecules, so
knowing these excited state energies is critical. The central issue to HTVS is that
limited excited state databases exist, and computational techniques for calculating
excited state energies are time-consuming. This thesis aims to solve this issue with
various approaches. First, triplet excited state energies are predicted with a machine
learning (ML) model trained on a dataset of TD-DFT energies generated with active
learning (AL) to ensure the training set size is optimized. While directly predicting
energies with ML is fast, there are issues with accuracy and training time. The sec-
ond approach calibrates a high-throughput computational chemistry method called
xTB-sTDA against TD-DFT with ML. This ensures both high accuracy and low com-
putation time. Finally, the third approach applies xTB-ML to a large dataset, using
AL to actively suggest candidate chromophores for photon conversion.
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Chapter 1

Introduction

1.1 Motivation

Solar energy technologies have garnered immense interest over the past several
years,2–5 in many countries around the world.6–11 Specifically, extensive research
has been conducted in the field of solar photovoltaics (PV), the process of converting
sunlight directly into electricity.12–17 A variety of PV technologies have been recently
developed to go beyond conventional silicon solar cells, including perovskites,18,19

thin film cells,20 and organic cells.21 However, all such solar cells suffer from an effi-
ciency cap known as the detailed-balance limit, which states the maximum efficiency
of a single-junction solar cell is 33.7%.22

The main loss mechanisms are known as spectrum losses, and can be categorized
into sub-bandgap and thermalization losses. Sub-bandgap losses are inherent to
solar cells as any photon with an energy below the bandgap cannot be absorbed
by the cell. Similarly, thermalization losses inherently occur as any photon with
excess energy above the bandgap loses this energy to heat upon absorption. Only
considering spectrum losses, a single-junction solar cell would have a maximum
efficiency of around 50%,23 so reducing spectrum losses is crucial to increasing PV
efficiency.

Several next-generation technologies have recently emerged to reduce such spec-
trum losses, such as multi-junction cells,24 concentrated solar,25 and hot carrier cap-
ture.26 However, these processes often require expensive materials that may be dif-
ficult to manufacture.27 Of interest to this work is the process of photon conver-
sion, which would convert unusable or non-ideal wavelengths of light into ener-
gies the solar cell can absorb efficiently.28 Photon conversion materials can be used
with existing solar cell materials, limiting the need for novel infrastructure to be
developed.29 The following section outlines the basics of photon conversion and
some common techniques to achieve conversion.

1.2 Overview of molecular photon conversion

Photon conversion technologies can be split into two groups: up- and down-conver-
sion. As suggested by their names, up-conversion converts 2 low-energy photons
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into 1 high-energy photon, while down-conversion does the opposite.
Several mechanisms exist for up-conversion, including photon avalanche,30 ex-

cited-state absorption,31 energy transfer up-conversion,32 energy pooling,33 and ther-
mal upconversion.34 However, these processes often require high-intensity, coherent
light, such as concentrated solar power or even lasers, as well as typically expensive
materials.35 An up-conversion technique that works for low-intensity light in or-
ganic molecules is known as triplet-triplet annihilation,36 which will be explored in
this study.

Similarly, mechanisms for down-conversion include spontaneous parametric down-
conversion,37 quantum cutting,38 and multiple exciton generation.39 While some of
these processes do indeed work at low intensities, they all require expensive inor-
ganic materials such as lathanides or quantum dots. Down-conversion can occur in
organic materials in a process called singlet fission,40 of interest in this study.

Before discussing the details of singlet fission and triplet-triplet annihilation, it is
important to understand some fundamentals of molecular luminescence. Figure 1.1
shows a Jablonski diagram demonstrating the basic phenomena of molecular lumi-
nescence.

FIGURE 1.1: Jablonski diagram showing the basic phenomena in molecular lumi-
nescence. Processes grouped into (a) non-radiative decay, (b) fluorescence, and (c)
phosphorescence. Straight arrows represent photonic processes while curved arrows
represent internal electronic processes. Thick lines indicate energy states while thin

lines indicate vibrational levels.

The luminescence process starts with excitation to an excited state energy level,
as shown by the blue arrow, indicating excitation from S0 to S1. From here, there
are typically three options. First, the system can undergo internal conversion (IC,
orange arrow), from the S1 state into a high vibrational level of the S0 state, and non-
radiatively decay (red arrow) into the ground state. This is shown as (a) in Figure
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1.1, and no photon is emitted in this case. Second, the system can undergo vibra-
tional relaxation (VR, red arrow) to the lowest vibrational level of the excited state,
and then radiatively relax to the ground state (light blue arrow) through photon
emission. This process is known as fluorescence, and is shown as (b) in Figure 1.1.
Lastly, the system can undergo intersystem crossing (ISC, yellow arrow), in which
the excited singlet state transforms into an excited triplet state, which can then ra-
diatively relax (green arrow). This process is known as phosphorescence (shown as
(c) in Figure 1.1), and typically a lower-energy photon than through fluorescence is
emitted.

Note here some properties of the triplet excited state. As a triplet state, the elec-
trons are unpaired such that they have parallel spin – typically, such an excited state
cannot be populated directly from the ground singlet state because it is spin forbid-
den. However, in systems with strong spin-orbit coupling (SOC), ISC can occur, in
which an electron in the excited singlet state reverses its spin. The triplet excited
state is often favorable because of its long lifetime compared to the fast decay of an
excited singlet state, allowing longer exciton diffusion lengths.41

1.2.1 Excited state energies

It is useful here to clarify some terminology for excited states. First, there is a funda-
mental difference between excitation and emission, although both involve energy
state transitions within a molecule. Excitation involves a transition between the
ground state and any vibrational level of an excited state. In contrast, emission in-
volves a transition between the lowest vibrational level of an excited state and any
vibrational level of a lower-energy state (e.g. the ground state). Figure 1.2(a) shows
a Jablonski diagram of excitation vs. emission to help elucidate this concept.

From Figure 1.2(a), it may seem that any vibrational level in either energy state
is easily accessible. In physical molecules, however, this is not the case, due to the
Franck-Condon principle. This principle states that excitation and emission operate
on much faster timescales than molecular geometry reconfiguration, so transitions
are more likely to occur between states with equivalent configuration, even if such
a configuration is not optimal for that energy state. This is shown in Figure 1.2(b),
indicating that 0→1 excitation from S0 to S1 is more likely than 0→0. The same
occurs for emission from S1 to S0. This creates a difference between peak excitation
and peak emission, as shown in Figure 1.2(c), known as the Stokes shift. Measuring
the S1 energy is therefore somewhat difficult, as the actual 0→0 energy transition
(yellow lines) is unlikely, so care should be taken when lifting experimental values
of S1 from literature to note how S1 was measured.

These fundamental processes of molecular luminescence form the basis of singlet
fission and triplet-triplet annihilation technologies, as discussed in more detail in the
following subsections.
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FIGURE 1.2: Schematics depicting the basics of excitation and emission. (a) Typi-
cal Jablonksi diagram of excitation and emission from ground state (S0) to excited
state (S1), with various vibrational levels (0-3) depicted for both states. (b) Demon-
stration of Frank-Condon principle of 0→1 vertical excitation (blue arrow) followed
by nuclear re-configuration and 1←0 vertical emission (red arrow). Also shows
the 0→0 transition energy in yellow. (c) Shows the expected experimental excita-
tion/absorption curve (blue) and emission curve (red), along with the theoretical 0→0

energy difference (dashed yellow line), demonstrating the Stokes shift.

1.3 Singlet fission

Singlet fission (SF) is the process of converting one high-energy photon into two low-
energy photons. Specifically, a molecule excited into its singlet excited state transfers
approximately half of its energy into a nearby molecule, exciting it into its triplet ex-
cited state, while simultaneously relaxing into its own triplet excited state. As men-
tioned before, the singlet to triplet transition is spin-forbidden, but SF circumvents
this issue by coupling the generated triplet states as one singlet state. Thus, instead
of relying on SOC and ISC, SF is instead classified as internal conversion (IC), and
can compete with vibrational or radiative relaxation speeds.
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1.3.1 Singlet fission materials

In 2010, a comprehensive overview of SF materials was presented by Smith and
Michl.40 As seen, conventionally, most SF materials have been molecular crystals42

or aggregates,43 as these allow rapid triplet diffusion and therefore more separation
before phosphorescence. However, more recently, molecular dimers have emerged
as potential SF materials as well.44 These are interesting as solids require molecular
packing so the versatility of structures is limited, while dimers are often in solution
and can be more diverse. However, dimers usually exhibit low triplet quantum
yields (TQY) (<10%), as seen in Table 2 of Smith and Michl.40 Note that the maximum
TQY is 200% as each singlet generates 2 triplets.

Fortunately, since that review was published, several papers have shown high
TQY of oligomers and single molecules, as presented in Table 1.1

TABLE 1.1: Triplet quantum yield of recent singlet fission molecules and oligomers

Material Notes
Excitation

Energy (eV)
Emission

Energy (eV)
TQY (%)

Perylene
dimer45 Cofacial 5.00 2.05 56

Pentacene
dimer46

3 isomeric
configs

1.84 0.77 156

Pentacene
dimer47

Polyaromatic
encapsulation

196

Pentacene
dimer48

Cross-
conjugated

162

TIPS
pentacene49

Single
molecule

200

Tetracene
tetramer50

Linearly
linked

2.43 1.20 128

TIPS
tetracene51

Single
molecule

120

Clearly there has been significant improvement in solution-based singlet fission.
However, most of these molecules are polyacenes, so there is still limited diversity
of molecules. There has recently been work in designing new types of singlet fission
materials,43,52,53 which may reveal promising new directions.
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1.4 Triplet-triplet annihilation

Triplet-triplet annihilation (TTA) combines two low-energy photons into one high-
energy photon. While this process sounds similar to SF, it is significantly more in-
volved. Eventually, two triplet states do combine to form a higher-energy singlet
state (which is the opposite of SF), but the triplet states must first be generated.
Thus, TTA requires a sensitizer molecule for triplet generation.

This occurs through ISC - the sensitizer’s singlet excited state is first populated,
which then transitions to a triplet state through ISC. Then, the sensitizer transfers
its triplet state to the emitter, through a process called triplet-triplet energy transfer
(TTET), a type of Dexter energy transfer (DET). DET is an energy transfer mechanism
that requires no direct chemical bonding, rather it is dependent on wavefunction and
spectral overlap. After the emitter is excited into its triplet state, when it encounters
another triplet-excited emitter, it transfers its energy (like reverse SF) to generate an
excited singlet state in the second emitter. This excited state can then fluoresce at a
higher energy than the two input photons. Figure 1.3 provides a schematic for the
TTA process.

FIGURE 1.3: Overview of the TTA process. Sensitizer excitation generates S1 state,
ISC transforms S1 into T1 state, TTET transfers sensitizer T1 to emitter T1, TTA be-
tween two excited emitter T1 states generates emitter S1 state, and emitter fluores-
cence emits a photon. Solid arrows indicate photon processes or internal electronic
processes. Block arrows indicate inter-molecular energy transfer. Thick black lines

are energy states while thin black lines are vibrational levels.

As seen, two low-energy photons are absorbed, and after several steps of energy
transfer, eventually one high-energy photon is emitted. Among these steps are sev-
eral loss mechanisms that reduce the energy of the re-emitted photon. First is the
singlet-triplet split in the sensitizer. Because the triplet energy level is usually lower
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than the singlet energy, there is a loss due to ISC and the resulting vibrational relax-
ation. Second, the triplet energy of the emitter may be less than the triplet energy of
the sensitizer, creating a loss in the TTET process. Lastly, the singlet energy of the
emitter may be lower than twice its triplet energy, creating further losses through
vibrational relaxation. These three losses can be thought of as energy losses, reduc-
ing the final energy of the photon emitted in comparison to the sum of the energies
of the absorbed photons. There are also efficiency losses, for example the oscillator
strength of the singlet excitation, the ISC/TTET/TTA probability, and the photolu-
minescent quantum yield of the emitter, all of which dictate the probability of an
absorbed photon being re-emitted. There are many current TTA materials, but due
to the loss mechanisms above, their efficiencies are relatively low.

1.4.1 TTA materials

Simon and Weber,36 Zhao et al.,35 and Ye et al.54 give comprehensive overviews of
conventional TTA materials. See Table 1 in Ye et al.54 and Figure 3 in Simon and
Yeber36 for some examples of typical sensitizer and emitter combinations. Aromatic
molecules (such as perylene, 9,10-diphenylanthracene, rubrene, pyrene, etc.) are
typically used as emitters, while metal-organic complexes (Pd and Pt porphyrins
such as octaethylporphyrins and tetraphenyltetrabenzoporphyrins) are conventional
sensitizers as they have strong SOC. Most conventional TTA materials have an up-
conversion quantum yield (UCQY) between 10-20%.55 To improve this efficiency,
many novel materials are still being proposed and investigated.56

1.4.2 Near-IR TTA materials

In addition to efficiency improvements, there are also efforts to expand the wave-
length regions TTA materials operate in. Currently, there are only certain classes of
molecules that work well for near-IR to visible up-conversion. See Table 1 of the
review published by Bharmoria et al. for a list of such materials.57 Most materi-
als still use porphyrins as sensitizers, tuned to specific absorption wavelengths, and
aromatics as emitters. However, new materials such as quantum dot sensitizers,
osmium complexes for direct triplet sensitization, or lanthanide-organic complexes
are also being actively explored.57 Note, however, that most of these materials have
extremely low UCQY of <1%. Some of the TTA materials with the highest UCQY
(>3%) are listed in Table 1.2, along with their excitation and emission energies in eV,
adapted from Bharmoria et al.57 Note all were measured in a toluene solution unless
otherwise stated.

As seen, there are several limitations in current materials. The UCQY is low, the
emission to excitation energy ratio is often significantly less than 2, and the excitation
energy is not low enough to be useful for silicon solar cells (1.1 eV). Thus, there is
clearly significant room for improvement in TTA performance, especially for near-
IR to visible upconversion. While it is possible to synthesize new molecules and
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TABLE 1.2: Upconversion quantum yield and energy deltas of highest-performing
TTA materials.57

Material
Excitation

Energy (eV)
Emission

Energy (eV)
UCQY (%)

(PdPh4OMe8TNP) /
bis(phenyltetracene)58 1.78 2.49 4.0

(PdPh4OMe8TNP) /
BPEN59 1.78 2.18 3.2

PtTPTNP / PDI60 1.80 2.14 3.0

PtTPTNP / rubrene60 1.80 2.21 3.3

PbS-CdS / 5-CT(T) /
rubrene61 1.53 2.21 4.2

Os(tpy)2+
2 /

(i-Pr2SiH)2An in THF62 1.71 2.99 5.5

PdPc / rubrene63 1.70 2.21 5.6

PtPc / rubrene63 1.70 2.21 4.9

PbS- rubrene– DBP(E)
as a crystal64 1.53 2.03 3.5

experimentally measure their efficiency, this is time- and resource- consuming. Ad-
ditionally, synthesized molecules would likely follow the same classes of molecules
that are known to perform well, rather than trying novel molecular structures. To
expand the breadth of potential TTA (and SF) molecules, computational chemistry
is needed.

1.5 Thesis aims

This thesis aims to use computational chemistry for high-throughput virtual screen-
ing (HTVS) of molecules for TTA and SF applications. There are several approaches
taken to accomplish this, using a variety of methods as outlined in Chapter 2.

The easiest approach would be to screen already-existing databases with excited
state properties calculated with high-accuracy computational chemistry techniques.
Unfortunately, while excited state databases do exist, the ones including triplet ener-
gies are either small or only include certain types of molecules. Chapter 3 of this the-
sis will focus on generating a triplet dataset derived from PubChemQC (PCQC),65

but instead of conducting millions of high-accuracy calculations, will focus on uti-
lizing active machine learning to accurately and efficiently predict triplet energies.

While machine learning (ML) is a useful tool, there are a few drawbacks includ-
ing potentially low accuracy and its inherent black-box nature which limits chemical
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intuition development. An alternative to direct ML is calibration ML, the idea of cali-
brating high-throughput computational chemistry techniques against high-accuracy
techniques, to achieve both fast computation and higher accuracy. As presented in
the following section, the existing calibrations, while fast, do not increase accuracy
significantly. However, there is precedent for using ML models to calibrate com-
putational chemistry techniques against either higher-accuracy techniques or exper-
iment. Chapter 4 will present a machine-learned calibration of xTB-sTDA against
TD-DFT, termed xTB-ML.

Using xTB-ML, we can conduct HTVS of photon conversion molecules, with con-
fidence in both accuracy and fast computation time. Chapter 5 discusses the appli-
cation of active learning to sample the global chemical space of PCQC and suggest
potential photon conversion molecules. Traditionally, active learning is paired with
TD-DFT, but applying xTB-ML instead rapidly accelerates each active learning cycle.

Lastly, Chapter 6 will present some conclusions and avenues of future work.
The following Methods section will define some of the above terms and provide

an overview of the methods used in this thesis.
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Chapter 2

Methods

2.1 Computational chemistry for excited state calculations

As seen in Section 1.2, knowing the excited state energies of molecules is critical
to designing new SF/TTA materials. There are various computational chemistry
techniques used to calculate excited state energies (refer to Figure 1.2 for the vari-
ous terms relevant to excited state energies). Excitation energy is approximated in
computation by vertical excitation. It is "approximated" because the computational
program will use the global energy minimum instead of the lowest vibrational level
energy. Vertical excitation is easy to calculate as no excited state geometry relaxation
is required. Emission energy is approximated with 3 steps: vertical excitation, ex-
cited state relaxation, and vertical emission. Again, the global energy minimum is
used for these steps. Another common calculation is the adiabatic excitation energy,
the energy difference between the energy minima of the excited and ground states,
which can approximate the true 0→0 energy transition as shown by the yellow line
in Figure 1.2(b). This circumvents the last step of the emission energy calculation, so
only 2 calculations are required.

In this thesis, only vertical excitations are used. This is due to time constraints –
in high-throughput screening of large databases, adding the computational expense
of excited state relaxation would be prohibitively slow. Further, the Stokes shift for
rigid molecules should be small – for example, Fang et al. showed the difference
between adiabatic and vertical excitation energies for 96 systems ranging from inor-
ganic homodiatomics to cyclic non-aromatic compounds was small, with a standard
deviation of 0.1 eV.66 Because most molecules considered in this thesis are small,
rigid, and aromatic, the vertical and adiabatic excitation energies should be reason-
ably close.

The following sections will review some computational techniques for calculat-
ing the vertical excitation energy (from now on, referred to as the excitation energy
or excited state energy).

2.1.1 High-accuracy techniques

There have been several techniques developed to calculate excited state energies of
molecules. The techniques can broadly be classified into wavefunction theory (WFT)
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or density functional theory (DFT). The difference essentially is that WFT seeks to
calculate the wavefunction through approximate solutions to the Schrödinger equa-
tion, while DFT calculates the electron density which, from the Hohenburg-Kohn
theorems, should uniquely determine the many-body wavefunction. Regardless,
both are considered high-accuracy methods, and some specific techniques are out-
lined below.

The Hartree-Fock (HF) ab initio method is a basic WFT that other techniques
have sought to improve upon. Such post-HF methods include configuration inter-
action (CI), electron propagator methods such as ADC(2), multiconfigurational self-
consistent field (MCSCF) with its variant CASSCF, coupled cluster (CC) methods, or
multireference (MR) methods such as MR-CISD or MRCC.67 While these methods
are very accurate and are often considered as reference data to evaluate accuracy
of other techniques, they come with several challenges, perhaps most importantly
a high computational cost, as well as particular protocols in identifying the active
space that must be tuned for each molecule.67

Since WFT methods attempt to find the many-body wavefunction directly, they
can be computationally expensive. Alternatively, for more computationally efficient
calculations, DFT is often used. DFT finds many 1-electron wavefunctions and calcu-
lates the electron density from these individual wavefunctions. The electron density
n(r) can then be mapped to the total energy of the system E:

E[n] = T[n] +
∫

νext(r)n(r)dr + EH [n] + EXC[n] (2.1)

using the universal functional F[n]:

F[n] = T[n] + EH [n] + EXC[n] (2.2)

where νext is the external (nuclear) potential, T is the kinetic energy, and the
Hartree (Coulomb) energy EH and exchange-correlation energy EXC encompass the
electron-electron interactions for the N interacting electron system. To make the
problem more tractable, we can reformulate to a system of N non-interacting elec-
trons, known as the Kohn-Sham (KS) equations:(

−∇
2

2
+ νs(r)

)
ϕi(r) = ε i ϕi(r) (2.3)

where ϕi(r) are the KS orbitals. νs can be expanded as

νs[n](r) =

[
νfield(r) +

NZ

∑
i

Zi

Ri − r

]
+

[∫ n(r′)
r− r′

dr′
]
+

[
δEXC[n]

δn(r)

]
(2.4)

where NZ is the number of nuclei with coordinates Ri and charge Zi and EXC

is the exchange-correlation functional. This expansion includes the external (i.e.
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nuclear) potentials, Hartree potential (electron-electron Coulomb potential) and ex-
change correlation. The exact form of EXC is unknown, and must be approximated.

There are various levels of approximations employed for EXC. With increasing
order of complexity, they are the local density approximation (LDA), generalized
gradient approximation (GGA), and hybrid functionals. Hybrid functionals com-
bine some WFT-calculated exchange with LDA and GGA methods for a more ac-
curate functional. The hybrid functional B3LYP68 is the most commonly used func-
tional in chemistry.69 It contains 3 experimentally fitted parameters and combines
LDA and the Becke 1988 functional (B88)70 for exchange, and LDA and the Lee-
Yang-Parr functional (LYP)71 for correlation.68

For computational simplicity, the form of the KS orbitals are defined as a linear
combination of basis functions Gα(r):

ϕi(r) =
NBF

∑
α=1

CαiGα(r) (2.5)

The simplest basis functions are atomic orbitals (AOs), but they can be gener-
alized and optimized for computation by using Gaussian Type Orbitals (GTOs). A
linear combination of GTOs gν(r) is called a contracted Gaussian (CG):

Gα(r) =
Nα

∑
ν=1

cνgν(r) (2.6)

Various levels of CGs are available as basis sets: STO-nG includes 1 CG com-
posed of n GTOs per atomic orbital, 6-31G72 includes 1 CG with 6 GTOs for core
atomic orbitals and 2 CGs (1 with 3 GTOs and 1 with 1 GTO) for valence orbitals,
6-31G*73 additionally includes polarization functions, and 6-31+G73 includes diffuse
functions. Other examples of basis sets are aug-cc-pVTZ74 and def2-SVP.75

Once the 1-electron Kohn-Sham orbitals ϕi(r) are known, the electron density
n(r) can be calculated as:

n(r) = 2
N/2

∑
j
|ϕi(r)|2 (2.7)

and can then be back-propagated to find the total energy of the system.
To calculate excited state energies, the time-dependent version of DFT (TD-DFT)

must be used.76 Many of the formulations of DFT have analogues in TD-DFT: the
Hohenburg-Kohn theorem is replaced by Runge-Gross, and the exchange-correlation
functional is instead the exchange-correlation kernel. While the details of the TD-
DFT implementation are beyond the scope of this section, the critical part is that
linear-response TD-DFT allows calculation of excited states using the ground state
density. Linear-response TD-DFT improves the zeroth-order approximation of ground-
state transitions to generate true optical transitions. In addition to vertical transi-
tions, TD-DFT also allows excited-state relaxation and calculation of adiabatic exci-
tation energies.
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In this study, the B3LYP functional is used. This is because a wide variety of
molecules are considered, and B3LYP would be the most applicable to this diver-
sity of structures. For DFT calculations, the 6-31G* basis set is used, while for the
TD-DFT portion, 6-31+G* is used, to accommodate the potentially diffuse orbitals in
the excited state. These (TD-)DFT settings are consistent with PubChemQC’s work-
flow, which was another large-scale excited state study.65 Larger basis sets and more
complex functionals were avoided due to the high-throughput nature of this work.

Generally, TDDFT is considered a standard for excited-state calculations,76 al-
though its accuracy is not as high as WFT methods, especially for non-adiabatic dy-
namics such as bond breaking or conical intersections.77 However, TD-DFT is often
the go-to method for excited state calculations as it is significantly cheaper than WFT
methods. TDDFT can be further simplified with the Tamm-Dancoff approximation
(TDA), reducing computation time.78

However, despite being less expensive than post-HF ab initio methods, TDDFT
(even with TDA) is relatively slow. Fortunately, several excited state databases al-
ready exist with calculations of molecular properties completed with either post-HF
or TD-DFT methods. These will be described in the following subsection.

Excited state databases

There are several large databases of molecules, such as GBD-1779 (166B) and Pub-
Chem80 (100M). However, these are often missing crucial quantum chemistry data.
The largest quantum chemistry dataset is QCArchive81 (47M), which is a repository
of various datasets such as ANI-182 (22M) and QM983 (134k). Unfortunately, excited
state calculations are often not included in these datasets, as they require extensive
additional TD-DFT calculations. There are, however, a few excited state databases,
as outlined below.

QM7b84 expands QM785 to include properties such as excitation energy calcu-
lated at the ZINDO,86 SCS,87 PBE0,88 and GW89 levels of theory for 7211 molecules.
(QM7 itself is a subset of GDB-1390 (970M) totalling 7165 molecules.)

QM891 is a subset of QM9 limited to 8 CONF atoms, totalling 21.8k molecules,
with ground state, vertical excitation, and adiabatic excitation energies calculated
using TD-DFT with the PBE0 functional and def2-SVP basis set. QM8 also includes
calculations with the coupled-cluster RI-CC292 method using the def2-TZVP basis
set.

Perhaps the largest excited state database is PubChemQC (PCQC),65 contain-
ing the first 10 singlet vertical excitation energies for 3.5M molecules. The 3.5M
molecules are a subset of all 100M PubChem molecules, without mixtures, isotopes,
molecules with a period in their SMILES representation, molecules with elements
Z>30, and charged molecules.65 PCQC uses TD-DFT with B3LYP/6-31G* for ground
state geometry optimization and B3LYP/6-31+G* for excited state calculations.65

Note this format of (functional/basis set) will be used throughout this thesis to de-
scribe the level of theory used for TD-DFT calculations.



Chapter 2. Methods 27

While the above databases only have singlet energies, there are also a few that
include triplet energies, which as discussed above are relevant for photon conver-
sion processes. VERDE materials DB (VerdeDB)93 is a recent database consisting of
1.5k molecules relevant for renewable energy and green chemistry research, specif-
ically including π-conjugated organic molecules such as porphyrins, quinones, and
dibenzoperylenes. It includes singlet and triplet energies for 1k molecules.93 Verd-
eDB uses TD-DFT with M06/6-31+G(d,p)94 calculations for ground and excited state
geometry optimization, therefore calculating 0-0 adiabatic excitation energies.93

QM-symex95 is a database of the first 10 singlet and triplet vertical excitation
energies of 173k (rotationally) symmetric molecules, expanding the 135k QM-sym96

database with 38k additional generated molecules and calculating excited state prop-
erties for all molecules. This database uses TD-DFT with B3LYP/6-31G(2df,p) for
ground state geometry optimization and B3LYP/6-31G for excited state calculations.95

QMspin97 includes 13k singlet and triplet carbene structures. The ground state
geometry optimization is done with TD-DFT, using B3LYP/def2-TZVP, but all ex-
cited state calculations are completed with post-HF methods.97 MRCISD+Q-F12/cc-
pVDZ-F12 is used to calculate the vertical spin gap while CASSCF(2e,2o)/cc-pVDZ-
F12 is used for singlet and triplet excited state optimization, allowing 0-0 energy
level calculations.97

Finally, QuestDB98 contains high-quality calculations of singlet, triplet, and var-
ious other vertical excitation states on 500 molecules, using WFT methods for all
calculations. Ground state optimization is done with CC3/aug-cc-pVTZ, and ex-
cited state calculations are done with the aug-cc-pVTZ basis set and a variety of
WFT methods including CIS(D), ADC(2), CC2, and others.98

While these datasets are a useful resource, there are clearly limitations to the
size and diversity of the constituent molecules, especially for triplet energies. To
quickly calculate excitation energies of molecules not in one of these databases, it
is necessary to turn to faster computational techniques, as outlined in the following
section.

2.1.2 High-throughput techniques

Recently, work has been done in tight binding as an approximation to DFT to im-
prove its computation time while retaining most of its accuracy. Specifically, density
functional tight binding (DFTB)99 was developed in the late 1990’s100 and featured
a combination of the accuracy of DFT and the efficiency of semi-empirical quantum
chemistry methods. However, the biggest drawback of DFTB is the extensive ele-
ment pair-wise parameterization required, as well as the low transferability of the
parameters.99

The eXtended Tight Binding (xTB) methods were designed to solve the issues
with DFTB.101 xTB methods generally feature optimized element-specific empirical
parameters for Z ≤ 86 and extended AO basis sets, while also including various en-
ergy terms such as classical repulsion, extended Hückel, and isotropic electrostatic
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and exchange-correlation energy.101 They differ from DFTB methods in that they uti-
lize top-down parameterization, with semiempirical parameters fit to a large dataset
rather than computed with first-principles calculations.101 The first xTB method to be
developed was GFN1-xTB,102 which had all of the properties above. GFN2-xTB103

was released a few years later to include a multipole electrostatic treatment and a
more advanced dispersion model. These methods are called GFN as they are fast,
robust, and accurate in calculating Geometries, vibrational Frequencies, and Non-
covalent interactions.102 Bannwarth et al. provide an excellent overview of the xTB
family of methods in their recent paper.101

The primary approximation applied in tight-binding methods is considering mol-
ecular orbitals to be a linear combination of atomic orbitals (LCAOs). For the xTB
family of methods, a partially polarized, minimal valence basis set with 1 CG com-
posed of either 3 or 6 GTOs is used for each AO.

Further approximations are used when mapping the density to total energy. The
total energy expression is similar to Equation 2.1, with LDA used for EXC, and
adding a non-local correlation (disperson) term. Instead of directly calculating the
converged density n(r), tight-binding methods use a reference density n0(r) com-
posed of a summation of reference densities of each atom: n0 = ∑A nA

0 . The reference
density is then related to the converged density with a density difference term ∆n
such that n = n0 +∆n. The total energy can then be Taylor expanded around ∆n = 0
as:

E[n] = E(0)[n0] + E(1)[n0, δn] + E(2)[n0, (δn)2] + E(3)[n0, (δn)3] + . . . (2.8)

Most tight-binding methods, including GFN(1,2)-xTB, truncate the expansion af-
ter 3 terms. After expanding and calculating these terms, we see specific physical
processes expressed at each order. The zeroth order includes repulsion (Erep) and
dispersion (Edisp), first order includes an extended Hückel-type term (EEHT) and dis-
persion again, second order includes electrostatic (EES), exchange-correlation (EXC),
and further dispersion, and third order includes EXC and dispersion. Each GFNn-
xTB method includes different terms for each order, for example, GFN2-xTB uses:

E = E(0)
rep + E(1)

EHT + E(2)
γ + E(2)

AES + E(2)
AXC + E(2)

disp,D4 + E(3)
Γ (2.9)

where AES and AXC are anisotropic terms, EΓ is an onsite electrostatic/exchange-
correlation correction, and D4 signifies a modified D4 dispersion model. More de-
tails about the form of each energy term is available in Bannwarth et al.101 These
approximations (LCAO basis set and the third-order Taylor-expansion) allow fast
yet accurate computation of ground state properties.

To conduct excited-state calculations, Grimme introduced the simplified Tamm-
Dancoff density functional approach (sTDA)104 as an approximation to TD-DFT. The
theory behind sTDA, the specifics of the simplifications employed, and details of



Chapter 2. Methods 29

the parameterization technique are available in the original paper.104 The key ap-
proximations of sTDA include simplifications to two-electron integrals and setting
an upper limit to the excitation space, which improve computation time by 2 or-
ders of magnitude.104 Note that because sTDA was developed to calculate excitation
spectra, there is no excited state relaxation component, so only vertical excitation
energies can be calculated.

In this study, we used GFN2-xTB for ground-state optimization with sTDA for
excited state calculations, following the workflow presented by Grimme and Ban-
nwarth in 2016, called xTB-sTDA.105 We specifically used the tight threshold for
geometry optimization, with the GBSA solvation model using benzene to mimic a
non-polar environment. We then used the xtb4stda package to prepare the wave-
functions output by xTB for sTDA. sTDA then calculated excited-state properties,
using an energy threshold of 10 eV.

Of relevance to this thesis are the computational time improvements provided
by xTB-sTDA compared to TDDFT.105 Specifically, excited state properties of several
molecules with 100s of atoms were able to be computed in minutes, and molecules
with 10s of atoms completed within seconds.105 A more comprehensive analysis of
computation time for xTB-sTDA compared to TDDFT was done in this work, as
shown in Figure 2.1.

FIGURE 2.1: (a) xTB-sTDA vs. (b) TDDFT runtime comparison for S1 calculations of
molecules in VerdeDB.93 Center plots (blue datapoints) are scatter plots of compu-
tational runtime versus number of atoms in each molecule, while side plots (orange

and green bars) show histograms to demonstrate the distribution of datapoints.

As seen, xTB-sTDA has immensely lower runtime compared to TD-DFT for ex-
cited state calculations, with potentially 3-4 orders of magnitude reduction. Most of
this runtime reduction is due to the time savings of ground state optimization, as
xTB takes 30-60 seconds, while DFT takes 3-4 hours. The time savings with using
sTDA are less drastic, with sTDA also taking 30-60 seconds, while TD-DFT takes
5-10 minutes.
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A natural tradeoff with faster computation time is potentially lower accuracy.
In Grimme and Bannwarth’s original paper introducing xTB-sTDA, they reported a
mean absolute error (MAE) between sTDA-xTB and reference energies (calculated
from SCS-CC2/TD-DFT) of between 0.34 and 0.48 eV, depending on the complexity
of the input structure.105 A further, more comprehensive analysis of sTDA error is
presented in Chapter 4 of this thesis. Regardless, for many applications, especially
for a first-pass screening for large databases, this level of error is acceptable. Due to
the fast computation time and relatively low error of xTB-sTDA, many recent works
have employed this methodology.

Recent works using xTB-sTDA

The publication introducing sTDA has been cited over 130 times, with studies apply-
ing sTDA to diverse systems including cyanobacteriochromes,106 conjugated poly-
mers,107 porphyrinoids,108 and proteins.109 Many of these studies106,108 attempt to
benchmark sTDA. For example, Batra et al. compared combinations of different TD-
DFT approximations (including sTDA), basis sets, and functionals against experi-
mental reference values of excited state energies of porphyrinoids.108 They found
sTDA with the def2-SVP basis set and the CAM-B3LYP110 functional to be the most
accurate, with an MAE of 0.05 eV across 12 molecules.108 Wiebeler and Schapiro
compared various computational chemistry techniques, including sTDA, for struc-
ture and excited state prediction of the cyanobacteriachrome.106 They found sTD-
DFT and RI-ADC(2) using the CAM-B3LYP functional for the ground state optimiza-
tion predicted experimental results well, but sTDA blue-shifted results by 0.14 eV.106

Note, however, that these studies only used sTDA, with a different computa-
tional chemistry technique (such as DFT or post-HF methods) to calculate the ground
state structure. While this helped improve the accuracy of the method, the over-
all speed of calculation is reduced. In contrast, several other studies, mostly from
Zwijnenburg and coworkers, used xTB with sTDA to achieve faster computation
time for high-throughput screening, and they were able to successfully screen large
databases of copolymers,111 conjugated polymers,107 small aromatic molecules,112

photocatalysts,113 and organic dyes.114

Using xTB instead of higher-accuracy methods for ground state structures natu-
rally leads to greater errors. To retain relatively high accuracy while keeping the
computation time low, instead of taking the raw xTB-sTDA excited state values,
Zwijnenburg and coworkers calibrate the data against a few TD-DFT calculated val-
ues. For example, Wilbraham et al. desired to map the excitation energies of small
aromatic molecules in chemical space with xTB-sTDA.112 143 molecules were used
as a calibration set for a linear shift correction, and the linear shift improved the
MAE of the 143 set from 0.25 to 0.21 eV.112 The linear shift was then applied to all
250k molecules considered in the study.112 Similarly, Heath-Apostolopoulos et al.
explored the property space of diketopyrrolopyrrole dyes with xTB-sTDA.114 They
used a sub-set of 105 dyes for the linear calibration, but found a poor correlation
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between xTB-sTDA and TD-DFT for sulfur-containining dyes.114 Linear calibration
was able to improve the error for sulfur-containing dyes from 0.20 to 0.18 eV.114

While linear calibration is a quick method for calibration that requires minimal com-
putational expense, there is clearly room for improvement.

Using methods such as machine learning to calibrate high-throughput methods
against high-accuracy methods could help improve results. Machine learning could
also be useful as a standalone computational chemistry technique trained on high-
accuracy methods to directly predict desired properties. The following section out-
lines machine learning applied to excited state chemistry.

2.2 Machine learning for excited state chemistry

A thorough review of ML for molecular excited states is presented by Westermayr
and Marquetand.67 Most of the details in the review are beyond the scope of this
thesis, besides a few key points.

First, relevant ML models to this thesis will directly predict the desired property
(excitation energy or error between excitation energies). Westermayr and Marque-
tand refer to this as the tertiary output, considering the wavefunction/density as
the primary and the energies as secondary output.67 For high-throughput screening,
however, having the ML model directly output the desired property is most efficient.

Next, we must consider which ML settings to use, including what type of model,
how to transform molecular structure into a machine-learnable format, and what
model architecture to use. Further, it would be useful to know how these different
settings historically have performed in predicting molecular properties. The follow-
ing subsections will detail these two points.

2.2.1 Common molecular machine learning implementations

At the most basic level, ML models for predicting excited states are most likely re-
gression models. Namely, the ML model would be trained on a dataset of molecular
structure information (SMILES, 3D geometry, etc) labeled with numerical values,
and the ML prediction would output a number for a given molecule. This is in con-
trast with classification models that would be trained on a set of molecules labeled
with categories, and then be used to predict the category of a test molecule.

The next step to generating an ML model is generating machine-learnable de-
scriptors for each molecule, since models typically require a numerical representa-
tion of a molecule as input.115 This can be done by featurizing the molecular repre-
sentation at either the molecule, substructure, or atom level. Featurizers can range
in complexity, including element fractions,116 distance or Coulomb matrices,117 sub-
structure fingerprints,118 or more complex graph and matrix features.118

Once the molecule has been featurized, it can be used as input for an ML model.
The most common architecture used for molecular ML is the neural network (NN).
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NNs work by passing information through layers, inferring patterns and learning
efficient representations of molecules with each successive layer.119 NNs are widely
used as they are highly flexible, have few hyperparameters to optimize, and have
multi-task capabilities.120

There are various implementations of NNs, such as convolutional NNs (includ-
ing graph (GCN) or text), message passing NNs (MPNNs), and deep tensor NNs
(DTNNs).118 GCNs have been used widely for molecular ML as molecules can be
naturally represented as graphs.121 MPNNs allow easy featurization of molecules as
descriptors are passed as input parameters in the network architecture..122

NNs must be trained with data in order to make accurate predictions. The neu-
rons in each layer of the NN have different weights for inputs, and the purpose
of training is to optimize these weights. The training process occurs over several
"epochs," as an optimization algorithm attempts to find the best weights to predict
outputs given inputs. The metric used to determine performance during training is
called "loss," and many loss functions exist including mean squared error (MSE):

MSE =
1
n

n

∑
1
(yi − ŷi)

2 (2.10)

where yi is the ith prediction, ŷi is the ith true value, and n is the number of
datapoints. Root mean squared error (RMSE) is another common metric, and is
simply the square root of MSE.

To increase accuracy of results, it is possible to create an ensemble of ML mod-
els and average predictions. There are several methods of creating ensembles. The
simplest is to train multiple models on the same dataset – due to the random initial
weights defined and the often stochastic nature of the weight optimization algo-
rithm, the model will output slightly different results each time. Another technique
is data resampling, or choosing subsets of a larger dataset to train multiple ML mod-
els. This can be done either randomly, or with k-fold cross-validation (k-CV). k-CV
splits the data evenly into k folds, and k times, one fold is set aside as non-training
data while the model is trained on the remaining data. Thus, k ML models are gen-
erated, each with slightly different training data. For all of the above techniques, the
ensemble of models can be used to predict properties, and the average of predictions
is often more accurate than any individual prediction.

In this study, a few NNs are considered, but the Chemprop MPNN123 (CP-MPNN)
is ultimately used. CP-MPNN operates on a 2D graph representation of a molecule
with atoms as nodes and bonds as edges. CP-MPNN is novel as it focuses on bond-
centered data rather than atom-centered, which limits extraneous loops which can
create noise in the final representation.123 The MPNN generates a neural represen-
tation of the molecule through multiple steps of directed message passing.123 Each
bond direction has a hidden state and a message, which are updated through T mes-
sage passing update steps.123 After the bonds are fully updated, the model tran-
sitions back to an atom representation by summing all incoming directed bonds
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for each atom.123 Then, adding the data for all atoms results in the final molecu-
lar featurization.123 Finally, this featurization is fed to a feed-forward NN for prop-
erty prediction.123 CP-MPNN was compared to several ML models with various
featurization techniques, and outperformed their performance for a wide variety of
datasets and desired properties.123

In this study, CP-MPNN is used both for directly predicting excited state ener-
gies, and to calibrate high-throughput computational chemistry techniques to achieve
higher accuracy. For ensembling, both random initial weights and k-CV are used.

While CP-MPNN has not yet been used to predict excited-state energies, other
molecular ML models have predicted such properties with great accuracy over the
last few years. The next subsection will give an overview of the performance of
recent ML models for excited state energies.

2.2.2 Predictive performance of recent models

Relevant ML models predict excited state energies of molecules in large-scale data-
bases. The following works fall under this category.

Montavon et al. predicted various ground- and excited-state properties (includ-
ing S1) by training a deep, multi-task NN with a Coulomb matrix (CM) variant de-
scriptor on 5k molecules randomly sampled from QM7b.84 They then tested the ML
model on the 2.1k remaining molecules, achieving an MAE for S1 of 0.13 eV, and an
MAE for Smax of 1.06 eV.84 The ML model required 3D structure as input, generated
from OpenBabel124 and PBE125 for ground state optimization.84

Pronobis et al. tried to directly predict various TDDFT energies by training a ker-
nel ridge regression model in combination with 2-body and 3-body interaction de-
scriptors on 10k molecules sampled from QM8.126 They then tested the ML model on
the remaining unseen 11.8k molecules, achieving an MAE for S1 of 0.48 eV.126 They
also compared the ML model to a similarly trained SchNet DTNN, which achieved
an MAE of 0.49 eV.126 Similarly to the previous work, this study also used relaxed
geometries (from QM8) as input.126

Ghosh et al. trained a DTNN to predict molecular excitation spectra.127 They
took the molecular coordinates and atomic charges of 132k molecules from QM9 as
input, using the 16 highest PBE+vdW eigenvalues as excitation energies.127 They
tested their model on the 10k training set from Ramakrishnan et al.,91 finding an
average RMSE of 0.19 eV and an RMSE of 0.16 eV for the lowest excitation energy.127

Nakata and Shimazaki, in their paper introducing PCQC, also generated an sup-
port vector machine regression model with a radial basis function kernel to predict
highest occupied molecular orbital (HOMO) - lowest unoccupied molecular orbital
(LUMO) gap in molecules.65 They simply used the SMILES representation of the
molecule as input, featurized with a 1024-bit topological fingerprint.65 They then
trained the model on 20k randomly selected molecules and tested on 980k molecules,
finding an RMSE of 0.36 eV.65
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Finally, Kang et al. trained a random forest (RF) ML model to predict the ex-
citation energy with the maximum oscillator strength for molecules in PCQC.128

They again only used the SMILES strings as input, featurized with the extended-
connectivity fingerprint (ECFP), Molecular ACCess System (MACCS) keys, and RD-
Kit descriptors.128 They then trained the RF model on 450k randomly sampled mol-
ecules, and tested the model on a randomly sampled 50k molecule test set, finding
an an RMSE of 0.43 eV.128

All of the above models attempted to directly predict molecular properties us-
ing ML. Taking a different approach, Ramakrishnan et al., in their paper presenting
QM8, used machine learning to correct TDDFT values against CC2, instead of di-
rectly predicting excited state values.91 They trained a kernel model using molecular
geometry as input with CM and bag-of-bonds (BOB) descriptors on 10k molecules
randomly sampled from QM8.91 The delta ML model improved the MAE from 0.27
eV (using just TD-DFT) to 0.1 eV, when predicting S1 on the 11.8k remaining mol-
ecules.91

This type of ML model has many names (delta, deviation, calibration, correction,
etc.), and has been used extensively in the past. Ramakrishnan and coworkers pub-
lished another study in 2015 using the delta ML approach to predict "enthalpies, free
energies, entropies, and electron correlation energies" of various molecules.129 They
attempted to correct the semi-empirical ZINDO method against the GW method,
and tested their approach on 7k small organic molecules, using a training subset of
1k molecules.129 They found the MAE decreased from 0.78 to 0.23 eV for HOMO
and 0.91 to 0.16 eV for LUMO when using the ML model.129 They then expanded
their scope to predict enthalpies of 134k molecules, correcting PM7 baseline values
against B3LYP target values, finding the MAE decreased from 7.2 to 3.0 kcal/mol
with a 10k training set tested on the remaining 124k molecules.129

Recently, Pollice et al. developed a workflow for HTVS of organic molecules with
inverted singlet-triplet splits, i.e. triplet excited state energy greater than singlet.130

Such materials require high-accuracy methods at the post-HF ab initio level (such as
coupled-cluster), but these are inherently incompatible with high-throughput work-
flows as they are too computationally expensive.130 Pollice et al. got around this
issue by calibrating ωB2PLYP/def2-SVP TD-DFT against EOM/CCSD using Gaus-
sian process regression, finding a 200-fold time reduction with high accuracy after
calibration.130 They also calibrated computed vertical S1 excitation energies against
experimental values from UV/Vis absorption data, using a linear regression, and
found an R2 around 0.9 for the shift.130 Unfortunately, because calibration was not
the primary objective of this work, they do not provide many details for either of
these corrections, though they acknowledge that this is an avenue of future work.130

The group of G.H. Chen has done extensive work in calibration ML models
to increase the accuracy of TD-DFT compared to experiment.131–135 Hu et al. first
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introduced the idea by calibrating heat of formation values calculated from TD-
DFT against experiment for 180 small/medium organic molecules using a neural-
network ML model.131 They found an improvement in RMSE from 21.4 to 3.1 kcal/-
mol with an ML model trained on 150 molecules and tested on 30.131 Sun et al. im-
proved this model in 2014 by adding sampling and bootstrapping methods and ex-
panding the dataset size to 539, resulting in an improvement in MAE from 14.95 to
1.31 kcal/mol for a 90-molecule test set.132 Yang et al. further improved the model
for large molecules in 2018 with a new size-independent ML correction, with a MAE
improvement from 28.75 to 1.67 kcal/mol for a test set of 13 molecules.133

Perhaps more relevant to this study, Wang et al. used a correction ML model to
predict absorption energies, calibrating B3LYP/6-31G(d) data against experiment for
60 molecules. Training the model on 50 molecules and testing on 10, they found the
RMSE reduced from 0.33 to 0.09 eV after using a neural-network based ML model.134

Li et al. improved upon this model by adding a genetic algorithm component and
expanding to 150 molecules (120 train/30 test). They again predicted absorption
energies and calibrated TD-DFT against experimental values, reducing the RMSE
from 0.47 to 0.16 eV.135

Unfortunately, most of these calibration models use fairly small datasets, as ex-
perimental data is often scarce. Regardless, as seen, there is significant precedent
for using both direct ML models and delta ML models for calculating excited state
data. Many of the above examples used randomly sampled training sets for the ML
model, but it is possible to more purposefully generate a training set, through active
learning, as discussed in the next section.

2.2.3 Active learning

All of the studies presented in the previous section use randomly generated train-
ing sets to train an ML model to predict excited state energies. However, this sam-
pling technique may be inefficient, with oversampling of easily predicted regions
of chemical space. Ff the reference data is generated with high-accuracy computa-
tional chemistry techniques, inefficiency can vastly increase computational time. At
the same time, random sampling may also create inaccurate ML models, if certain
important regions of chemical space are undersampled.

Active learning (AL) can help solve this issue. AL is the process of building up a
training set piece by piece. Starting with an initial training set, an ML model is gen-
erated and used to determine which areas of chemical space require more sampling.
This is done with a measurement of uncertainty, usually by creating an ensemble of
individual ML models and taking the variance in predictions as uncertainty. Then,
the highest uncertainty molecules can be labeled and added to the training set, and
the process repeated.

Another application of AL is to suggest suitable molecules on the fly. Instead of
using uncertainty as a metric to choose molecules, a suitability function is defined
which quantifies how well a molecule matches desired properties. Then the ML
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model can be run on the database and be used to find suitable molecules, which can
be added to the training set to refine the model, and so on in cycles.

The concept of AL is derived from Bayesian optimization, which is a global op-
timization technique for functions that would be too expensive to evaluate directly.
Instead, a surrogate function is created, uncertainty in the surrogate is evaluated,
and an acquisition function based on the uncertainty and potentially other factors
is used to guide sampling. Bayesian optimization was applied to ML in 1992 and
termed "query by committee" (QBC).136 In QBC-based AL, the surrogate is an ML
model, uncertainty is usually ensemble variance, and the acquisition function is usu-
ally the sum of uncertainty and potentially suitability.

In this work, active learning was used both for training set generation and on-
the-fly suggestion of candidate molecules. For training set generation, the acquisi-
tion function was solely based on uncertainty, and a training set was built up of high-
uncertainty molecules. This was to generate the smallest dataset required to achieve
low-error predictions. For molecule suggestion, the acquisition function included
both uncertainty and suitability, allowing quick suggestions of candidate molecules.
There is significant precedence for AL being used for molecular ML. The following
studies are most relevant to this thesis.

Gubaev et al. used active machine learning to compose a dataset used to pre-
dict enthalpies of molecules in QM9.137 Starting with a dataset of 1k randomly sam-
pled molecules, they ran 22 cycles of AL to achieve a 6k set.137 They developed
a custom-defined "novelty" acquisition function to prevent similar molecules from
being added to the training set, as well as a custom moment tensor ML model.137

While the MAE and RMSE of the final AL training set was only slightly less than a
randomly sampled 6k training set, the maximum error was significantly lower (20
vs. 160 kcal/mol), indicating AL did a much better job of limiting outliers.137

Kunkel et al. used active learning for the discovery of novel organic semiconduc-
tors in an unlimited search space with a Gaussian process regression ML model.138

They started with an initial training set of 179 molecules, and defined an acquisition
function that included both fitness and uncertainty, with a weighting parameter in-
cluded to prioritize one over the other.138 They first tested their AL on a fixed space
of 65,552 molecules, out of which 2438 molecules were high-performing, finding
that after 50 AL cycles they were able to consistently identify 70-80% of the high-
performing molecules, with a training size of only 5179 molecules.138 Applying AL
to the unlimited chemical space, after 15 AL cycles, they generated a total of 1680
molecules, of which 900 had favorable characteristics.138

Smith et al. used active learning to improve prediction of molecular potential
energy.139 The previously generated ANI-1 model was based on random sampling,
but in this work they generate ANI-1x using AL.139 They first reduce ANI-1 to elimi-
nate redundant molecules, then expand the training set by using AL to sample small
molecules from GDB11, ChEMBL, and algorithmically generated dipeptides.139 ANI-
1x was able to match the performance of ANI-1 with 10% of its training size and
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vastly outperform (by 5x) ANI-1 with 25% of its training size.139

Gómez-Bombarelli et al. reported a comprehensive virtual screening approach
for organic LEDs, starting with a 1.6M molecular library and ending with experi-
mental validation of candidate molecules.140 Active machine learning was used as
TD-DFT calculations on 1.6M molecules would be prohibitively slow.140 The AL pa-
rameters were as follows: the initial training set was 40k randomly selected molecules,
the surrogate model was a multi-task NN, and the acquisition function was a figure
of merit based on the singlet-triplet split and oscillator strength, not considering
uncertainty.140 The model was used to suggest molecules for further analysis with
TD-DFT, eventually suggesting 400k molecules, of which 3,000 had both high oscil-
lator strength and low singlet-triplet split.140 This is one of the few studies applying
AL to excited state calculations, but because the focus was on materials discovery,
unfortunately not many details are provided for AL implementation.

Clearly, active learning is a useful addition to conventional ML, as it can: reduce
the size of the training set, improve the predictive power of the ML model generated,
and suggest potential candidate molecules on the fly.

As seen, there are a variety of techniques that can be used for high-throughput
virtual screening of molecules, including TD-DFT, xTB-sTDA, ML, and AL. The fol-
lowing chapters will apply these techniques in various forms to identify novel chro-
mophores. Specifically, Chapter 3 will use TD-DFT, ML, and AL to directly predict
excited state energies. Chapter 4 will use ML to calibrate xTB-sTDA against TD-
DFT. Chapter 5 will use ML-calibrated xTB-sTDA paired with AL to rapidly screen
molecules and identify candidates for TTA/SF. Each of these chapters will start by
recounting some motivation, then outline the specifics of the methodology (includ-
ing how the above methods were used in the workflow), present and discuss results,
and finally summarize the work and outline some future directions. The final chap-
ter (Chapter 6) will present the overall conclusions of this thesis.
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Chapter 3

Active machine learning for triplet
dataset generation

3.1 Motivation

As discussed in Section 1.2, knowing triplet excited states of molecules is critical
for discovery of new materials for low-intensity photon conversion techniques such
as singlet fission (SF) and triplet-triplet annihilation (TTA). While it is possible to
experimentally measure triplet energies, this is time- and resource- consuming. It
is much cheaper to conduct virtual screening of molecules with calculated triplet
energies. However, very few triplet energy databases exist: of the databases out-
lined in Section 2.1.1, only 4 (VerdeDB,93 QM-symex,95 QMspin,97 and QuestDB98)
have triplet energies. Additionally, these databases have some restrictions: VerdeDB
is small with only 1k triplet energies calculated,93 QM-symex only includes sym-
metric molecules,95 QMspin only contains carbene structures,97 and QuestDB is also
small with 500 molecules.98 A larger database would offer depth and breadth: broad
exploration of the chemical space for previously unknown classes of molecules that
could serve as efficient photon converters, and deep exploration of a subset of chem-
ical space for molecules with more suitable properties.

Ideally, we would expand PubChemQC (PCQC)65 to triplet excited state data,
as it already includes TD-DFT calculations for the first 10 singlet excited states of
3.5M molecules. However, generating TD-DFT triplet energy data for millions of
molecules is computationally expensive: the PCQC project was started in December
2013 and only completed calculations for 2 million molecules in June 2015.65 For
triplet calculations, at least the optimized ground state structure has already been
provided in PCQC, but still 3.5M triplet state calculations would take around 41
months to complete on the Imperial cluster, assuming each molecule takes 5 minutes
to calculate and 10 jobs can run concurrently. Therefore, this study aims to use ML to
generate triplet data for the 3.5M molecules in PCQC. Essentially, an ML model will
be trained on a smaller training set (<10% of the dataset size) and used to predict
triplet energies of the remaining molecules with reasonable accuracy.

Conventionally, a training set would be composed of randomly sampled mol-
ecules. The following section discusses this approach.
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3.1.1 Conventional ML

For the conventional ML approach, 500k molecules were randomly sampled from
PCQC and formed the training set. Only singlet energies were used, since triplet en-
ergies were unavailable in the database. The ML model architecture was a message-
passing neural network (MPNN) generated using ChemProp (CP).123 A CP MPNN
ensemble model was trained with 10-fold cross-validation splits - meaning the data
was split into 80%/10%/10% train, validation, test sets 10 times with unique test
sets, and 10 ML models were trained based on the 10 subsampled training sets. Then,
the ensemble model was used to predict the S1 energies for 350k (unique) molecules
randomly chosen from PCQC. Figure 3.1 shows plots of the ML predictions versus
the ground truth values taken from PCQC.

FIGURE 3.1: Comparison of ML-predicted S1 energies (x-axis) vs. TD-DFT generated
S1 energies from PCQC (y-axis). (a) Shows all datapoints while (b) shows a heatmap
of values, with the colorbar representing the number of molecules in each pixel. Inlaid

box shows quantitative measurements of accuracy for ML predictions.

Here, it is evident from the R2 of 0.9 that the ML model accurately predicts the
TD-DFT ground truth data. While the distribution of data is wide, the heatmap
removes outliers and shows most of the data is in excellent agreement with TD-
DFT values. A histogram of calculated errors is provided in Appendix Figure A.1.
The MAE of 0.15 eV and RMSE of 0.28 eV are similar to those of previous models
for excited state energy predictions, as presented in Section 2.2.2. Further, since a
500k-molecule trained ML model accurately predicts S1 energies, it is reasonable to
assume a similarly sized dataset would accurately predict T1 energies.

However, 500k TD-DFT calculations would be slow even given an optimized
ground state structure (approximately 6 months given each molecule takes 5 min-
utes to calculate, and the Imperial cluster allows 10 concurrent jobs). For this reason,
it is necessary to generate a training set more intelligently using active learning (AL).
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Section 3.2 discusses the AL methodology, presenting the workflow used in this
work as well as optimizations to the workflow. Section 3.3 then presents the results,
first testing the optimized AL workflow on singlet energies (since these are known),
and once proven to work, applying the workflow to generate triplet data. Com-
bining these two predictive models, Section 3.3.4 identifies candidate molecules for
photon conversion.

3.2 Methodology

3.2.1 Active learning workflow

Active learning is introduced in Section 2.2.3 as a way to build up training sets.
Figure 3.2 shows the AL workflow used in this work.

FIGURE 3.2: Active learning workflow. Initial training set composed of molecules
from literature scraping. In each AL cycle, a 10-fold ML model is generated with
the training data. The model is then used to measure uncertainty for the remaining
molecules in the dataset. Molecules with high uncertainty are extracted, labeled, and
added to the training set. Once the number of molecules with high uncertainty is
low enough and the MAE on the test set has stabilized, we stop AL cycles and obtain
a final training set. Blue boxes represent data, yellow boxes represent quick steps,
orange boxes represent moderately slow calculations, and red boxes represent very

slow operations. Green box represents final model.

Starting with a small initial training set (10k molecules generated from literature
scraping of relevant molecules, detailed in Section 4.2.2), an ML model is generated
and used to predict on the larger database. As before, a 10-fold ML model is used
as an ensemble, but instead of averaging the results, here an epistemic uncertainty
value is calculated using the variance in the models. Specifically, the uncertainty for
molecule i is defined as:

ρi =
σi√
Ni

(3.1)
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where σi is the ensemble variance and Ni is the number of atoms for molecule i.
This expression is derived from Smith et al. (2018).139 They divide by

√
N because

they are trying to predict energy - although there is no physical motivation behind
dividing by

√
N for excited state energy, it helps improve stability. Uncertainty is

used as a predictor of error, where error is defined as:

ε i =
|max(Eensk

i − Ere f
i )|√

Ni
(3.2)

where Eensk
i is the energy for ensemble k, Ere f

i is the reference energy from the database
for molecule i. Again, this definition is derived from Smith et al. (2018)139 and is used
for stability of the AL cycles. As seen in Figure 3.3, there is a general correlation be-
tween uncertainty and error as defined above.

FIGURE 3.3: Heatmap of scatter plot of error vs. uncertainty for S1 energies of
molecules predicted with 10-fold ML model trained on the initial training set. Shows
general correlation between uncertainty and error. Compare with Figure 1 of Smith
et al. (2018).139 Note that most molecules are concentrated at low error and low un-
certainty, while there is a general positive correlation between uncertainty and error.

Once the uncertainty for molecules is calculated, high-uncertainty molecules are
chosen to be labeled, and depending on the energy type desired (S1 or T1) the data
is either extracted from the database (for S1) or calculated with TDDFT (T1). The
labeled molecules are then added to the training set, and the AL cycles continue.

This AL workflow can be optimized by tuning certain parameters. Two forms
of optimization are done here, first with the initial training set, and second with the
rules for molecule addition per cycle.

3.2.2 Initial training set optimization

The initial dataset of 10k molecules is composed of molecules scraped from litera-
ture abstracts tagged with "triplet-triplet annihilation" or "singlet fission" (more de-
tails provided in Section 4.2.2). However, due to the nature of this scraping, it is
possible that many molecules are fairly similar, creating redundancies in the data,
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which limits the wider applicability of the initial training set to general molecules.
One way to reduce redundancy is by removing molecules whose properties can be
predicted by a ML model trained on other molecules in the dataset. This training
set optimization is inspired by Figure 2(a) in Smith et al. (2018),139 adapted for this
work as shown in Figure 3.4.

FIGURE 3.4: Initial dataset optimization workflow. Blue boxes represent data, orange
boxes represent quick steps, red boxes represent slow operations, and green box rep-

resents final optimized training set.

The workflow starts by randomly sampling 2% of molecules from the initial
training set. Then, an ML model is generated and used to predict properties of the
remaining non-training data, and the error is calculated between predicted values
and reference values (for S1, in the PCQC database, and for T1, calculated with TD-
DFT). Then, if more than 5% of the remaining molecules have high error (defined as
> 0.5 eV), then 2% of the high-error moleucles are added to the training set, and the
ML cycle repeats. If less than 5% of the remaining molecules have high error, then all
of the high error molecules are added to the training set. This is then defined as the
reduced training set. The reduced set is compiled with any previous reduced sets,
and the size of the total training set is calculated. Then, molecules are randomly
sampled from PCQC to increase the size of the total training set to 10k. If greater
than 1k molecules are added, then the reduction cycle restarts with those sampled
molecules to generate a new reduced set. If less than 1k molecules are added, then
these are considered the last reduced set, and are compiled with all previous reduced
sets to form the final, optimized training set.

Figure 3.5(a) shows the ML cycle round 1, starting with the 10k initial training
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set and ending with a reduced 3.5k set. The dataset gradually grows over 100 it-
erations to ensure all molecules in the reduced training set are essential and non-
redundant. Figure 3.5(b) shows the results of the final, optimized training set (la-
beled ’AL’) compared with a randomly selected 10k training set (’RS’) and the initial
literature-scraped training set (labeled ’SCOP’). The plot shows RMSE of ML predic-
tions on a 50k test set randomly selected from PCQC, and shows the improvement
in accuracy after the initial dataset optimization is complete.

FIGURE 3.5: Results of initial dataset optimization. (a) Shows an example of an ML
cycle starting with 10k molecules and ending with a 3.5k reduced dataset, and (b)
shows a comparison of the final optimized training set (blue) with a randomly gen-
erated dataset (green) and the initial training set (red). The x-axis indicates the seed
used in the random generator to create the random training set as well as the 50k test

set, to show consistency of results across random sets.

The initial dataset has fairly high RMSE, as expected, likely due to the homogene-
ity of the data. In contrast, randomly sampled training sets have lower RMSE, but
the optimized training set has the lowest RMSE, which validates the optimization
approach.

To qualitatively evaluate the improvement, it is possible to visualize coverage of
global chemical space by the optimized dataset versus the original. UMAP141 was
chosen for global embedding due to its speed compared to other embeddings such
as t-SNE. UMAP embeds high-dimensional molecular data into 2 dimensions, us-
ing the Jaccard-Tanimoto similarity between Morgan fingerprints of molecules for
proximity. Figure 3.6a shows the global embedding of the literature-scraped dataset
(labeled ’SCOP-PCQC’) in the global chemical space (labeled ’PCQC (global)’). Sim-
ilarly, Figure 3.6b shows the global embedding of the optimized initial dataset (la-
beled ’AL-opt’).

As seen, the SCOP-PCQC dataset lacks coverage in certain areas, while clus-
tering in other areas. While this can be useful for predicting properties of certain
molecules, it limits the broader applicability of this dataset. In contrast, the AL-opt
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(a)

(b)

FIGURE 3.6: Global embedding of (a) literature scraped and (b) optimized training
datasets in PCQC. UMAP was used for global embedding of PCQC (grey), and the

model was used to predict locations of the specific datasets (red).
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dataset has much broader coverage, with less clustering of datapoints. Although the
distribution may look random, it indeed performs better than a randomly generated
training set, as proven in Figure 3.5. This is likely because the optimized dataset is
sparse in areas where molecules are similar and therefore easy to predict, and more
condensed where molecules are different.

Now that an optimized initial training set has been generated, we can move onto
optimizing the molecular additions for each AL cycle.

3.2.3 AL cycle molecule additions

The next important optimization is choosing which molecules to add to the training
set for each AL cycle. In Figure 3.3, while there is a general correlation between high
uncertainty and high error, there is not a clear correlation. It is therefore necessary
to decide thresholds for "high error" molecules and "high uncertainty" molecules.
Figure 3.7(a) shows a colormap of the distribution of possible error thresholds and
uncertainty thresholds, and the percentage of high-error molecules included for each
point on the grid. Figure 3.7(b) shows a cross-section of (a), with error threshold
fixed at 0.3 eV. Uncertainty and error are defined in Equations 3.1 and 3.2 above.

FIGURE 3.7: (a) Plot of percentages of high-error molecules included as a function of
error and uncertainty thresholds. (b) Plot of total number of molecules added as a

function of uncertainty threshold, assuming an error threshold of 0.3 eV.

As seen, depending on the error threshold used to define molecules as "high
error", it can be easy or very difficult to capture a large fraction of "high error"
molecules. Because the objective is to generate a highly accurate ML model, a strict
error threshold of 0.3 eV is chosen. One drawback of having a low error threshold
is the large number of molecules added per AL cycle - as seen in Figure 3.7(b), the
number of added molecules exponentially increases as the uncertainty threshold de-
creases. Figure 3.8 presents two plots to help understand the distributions of total
molecules added versus high-error molecules added, assuming an error threshold
of 0.3 eV.
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FIGURE 3.8: (a) Plots of number of molecules captured as a function of uncertainty
threshold for a fixed error threshold of 0.3 eV. Green line shows total number of high-
error molecules, while red line shows number of high-error molecules included. Blue
line shows total number of molecules included. (b) Plots of percentage of high-error
molecules captured. Green line shows percentage of high-error molecules included
in captured data, while red line shows percentage of captured data that is high-error.

Figure 3.8(a)’s red and green lines show the benefits of a low uncertainty thresh-
old. The green line shows the total high-error molecules, and the red line shows the
number of high-error molecules included as a function of uncertainty threshold. As
seen, a lower uncertainty threshold increases the number of high-error molecules
added. Unfortunately, it also increases the number of total molecules added (seen in
the blue line), expanding the dataset. To explore this further, Figure 3.8(b) shows the
percentage of high-error molecules captured, as well as the percentage of captured
molecules that are high-error. As seen, as the uncertainty threshold decreases, the
percentage of high-error molecules included increases, but because so many extra-
neous molecules are added, the high-error molecules make up a smaller percentage
of the total added dataset.

Because the primary objective of this workflow is increasing the accuracy of the
ML model, a low uncertainty threshold is tolerable, despite the large number of
molecules added per cycle. 0.01 was chosen as the uncertainty threshold, corre-
sponding to 85% of high-error molecules being included in the added dataset, and
100k total molecules added. Note that as the AL cycles continue and the model
improves, fewer molecules should be labeled as high-error.

Now that the AL workflow has been optimized, we can begin running AL cycles
and analyzing the results.
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3.3 Results

3.3.1 Singlet AL

The AL workflow was run for 8 cycles, and the training sets at each cycle were tested
on a randomly generated 350k molecule test set. As before, an ensemble ML model
was trained on 10 folds, and the predictions were either averaged to give the final
prediction, or used to calculate the epistemic uncertainty as defined above. The test
sets were pruned to avoid any molecules in the training set. Figure 3.9 shows the
performance of the ML model at each AL cycle, as well as the training set size.

FIGURE 3.9: Plots of various performance measures of the ML models generated at
each cycle of AL. ML models were trained on the training set comprised of the previ-
ous cycle’s molecules plus the added molecules from uncertainty analysis. They were
then used to predict S1 energies on a randomly generated 350k molecule test set, and

the predictions were compared against the ground truths in the PCQC database.

As seen, the R2 consistently increases, and MAE/RMSE consistently decrease,
with each additional AL cycle. The largest improvement is with cycle 1, which adds
around 100k molecules to the training set. After cycle 1, gradual but consistent im-
provements can still be seen.

To show that the uncertainty and error thresholds defined in the previous sec-
tion help improve the ML performance, Figure 3.10 shows plots of uncertainty ver-
sus error for the beginning of AL (cycle 0) and the end (cycle 8). As seen, the per-
centage of predictions that are either high error or high uncertainty drastically de-
crease through AL, with only 1.35% of molecules exhibiting high error and 6.27% of
molecules exhibiting high uncertainty at the last AL cycle.

We can also visually see the improvement at cycle 8 by plotting the ML predic-
tions against the database reference values, as shown in Figure 3.11. As seen, there
are fewer outliers, and more points are located on the x = y line. Quantitatively, the
R2 increases by 0.11 points and the MAE/RMSE decrease by 40%.
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FIGURE 3.10: Plots of heatmaps of error vs. uncertainty for (a) cycle 0 (reproduced
from Figure 3.3 for convenience), and (b) cycle 8. Black lines show the error and un-
certainty thresholds used in this workflow. Inlaid data shows quantitative measure-
ments of improvement of ML model by reducing high-error and high-uncertainty

predictions.

FIGURE 3.11: Plots of heatmaps of predictions vs. reference for (a) cycle 0 and (b)
cycle 8. Dashed black line shows the x = y line. Inlaid data shows quantitative

measurements of improvement of ML model.

To qualitatively evaluate the AL cycles, we can plot the added molecules in
global chemical space. Figure 3.12a shows plots of molecules added in each AL
cycle (colored according to AL cycle) in global chemical space, Figure 3.12b shows
contour density plots of molecules added per cycle, while Figure 3.12c shows a den-
sity plot of the final training set in global chemical space. Again, UMAP was used
with 350k molecules randomly sampled from PCQC as the global reference, with
positions of the training sets predicted accordingly.

As seen in these plots, the AL workflow allows adaptive training set generation.
In Figure 3.12a, all cycles tend to broadly cover the global chemical space, but as
seen from Figure 3.12b, even starting from cycle 0 additions, the AL workflow is
able to identify high-uncertainty areas. As the cycles progress, the AL workflow
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(a)

(b)

(c)

FIGURE 3.12: Global embedding of (a,b) AL added molecules and (c) final training
set (cycle 8) in PCQC. (a) Shows all molecules while (b) shows a contour plot for
clarity. The contour plot splits the data into 3 sections, 50% of molecules are below the
outer line while 25% are above the inner line. (c) Shows a density plot of number of
molecules in space. Density of points for (b) and (c) were calculated using Gaussian
kernel-density estimation. UMAP was used for global embedding of PCQC (grey),

and the model was used to predict locations of the specific datasets (colored).
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continues to sample the high-uncertainty areas, as seen by the red and yellow dat-
apoints/contour lines. Specifically, the left center region, lower region, and right
lower region have a higher concentration of datapoints, indicating these regions are
over-sampled by AL. This over-sampling is more clearly seen in 3.12c, where higher
concentrations of molecules are located in the same sections of chemical space as
described before. This indicates that even though these molecules are nearby in
chemical space, their excited state properties may be quite different and difficult to
predict, as small changes in chemical structure could create large differences in S1
energy. In contrast, other regions of chemical space are more sparsely covered by the
AL set, indicating properties of these similar molecules are more easily predicted.

From these plots and data, it is evident that the AL cycles produce a viable, accu-
rate ML model by building up an optimized training set. To prove the performance
increase is not simply a result of a larger training set, but rather is due to intelli-
gent training set construction with AL, we can compare the AL results to random
sampling.

3.3.2 Comparison to random sampling

We first compare the performance of the final ML model from AL to the conventional
ML model in Section 3.1.1, formed from randomly sampled (RS) molecules. Table
3.1 shows this comparison.

TABLE 3.1: Performance of final AL model vs. RS model

RS AL

R2 0.896 0.915

MAE 0.153 0.159

RMSE 0.287 0.248

Train Size 500,000 276,013

As seen, the AL model outperforms the RS model in virtually all measures, with
only a very slightly higher MAE. This is despite the training size of the AL model
being 55% the size of the RS model, creating a significant time savings for calcula-
tions. This shows the importance of intelligently formulating the training set instead
of relying on random sampling of the chemical space.

To further prove this point, at each cycle of AL, an equivalently sized training
set composed of randomly sampled molecules was generated. An ML model was
then trained on this data and tested on the same test set as the AL data. Figure
3.13 shows a comparison of RMSE for ML models trained on RS versus AL training
sets. As seen, the AL models outperform the RS models, slightly at first but more
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strongly as the cycles increased. The RS models start to stagnate in performance
improvements, while the AL models continue to steadily improve.

FIGURE 3.13: Plot of RMSEs of ML models trained on actively learned (AL) or ran-
domly sampled (RS) data for each AL cycle. RS data is composed of randomly sam-
pled molecules of the same size as the AL training set. Both ML models are tested on

350k randomly sampled molecules, pruned for no overlap with either training set.

From these analyses, it is clear the AL model is able to predict S1 energies accu-
rately after 8 cycles. The training set size is only half of what would be needed with
random sampling of molecules. The next step is to apply this AL workflow to triplet
energies, and analyze the results.

3.3.3 Triplet AL

The same AL workflow is applied to triplet energies to generate an accurate ML
model with a minimal training set. The initial dataset is the same as described in
Section 3.2.2, and the same uncertainty threshold of 0.01 (as defined in Section 3.2.3)
is used. At the time of writing, only 1 AL cycle with T1 energies was able to be com-
pleted. 161,710 molecules were labeled as high-uncertainty after the AL cycle. Figure
3.14 shows a histogram of uncertainties, for reference. Of the 162k added molecules,
T1 energies of 133,186 were successfully calculated with B3LYP/6-31+G(d) TD-DFT.
Only one cycle was able to be completed because 133k TD-DFT calculations took
several weeks to complete.

Adding these 133k molecules to the initial 10k training set gave a new training
set size of 143k. Similarly to S1, the molecules were plotted in global chemical space
to get a sense of relative distribution and concentrations of each training set, shown
in Figure 3.15.

As seen, the initial added molecules match the distribution in Figure 3.6b, with
broad coverage and a few areas of relative concentration. The first AL cycle then
focuses more on certain areas of high uncertainty, namely the bottom left as well as
the bottom left of the rightmost grouping of molecules. This generally matches the
distribution of added molecules for S1 (Figure 3.12b), indicating the ML model has
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FIGURE 3.14: Histogram of T1 energy uncertainties for 350k test molecules, based
on the ensemble ML model generated from the initial 10k training set. Uncertainties

calculated based on Equation 3.1. Dashed line shows 0.01 uncertainty threshold.

FIGURE 3.15: Global embedding of AL added molecules per T1 cycle. Kernel density
estimate (KDE) plot with 50% of molecules lying within the outer circle and 25% of

molecules within the inner circle.

trouble predicting S1 and T1 energies in the same regions of chemical space. This
makes sense as the same structures influencing the S1 excited state would likely
influence the T1 excited state as well.

For S1 energies, the ML models from each AL cycle were able to be tested on
a large, 350k test set due to energies being already available in the dataset. For
T1, a smaller 10k test set was created of unique molecules not present in the 143k
total training molecules. The following plot compares MAE and R2 for the two ML
models used to predict properties on the 10k test set.
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FIGURE 3.16: MAE and training size for the 2 AL training sets completed. Cycle 0 is
the baseline with 10k initial molecules, while cycle 1 added 133k molecules. Blue line

is MAE and black line is training set size.

Based on this analysis, we can see that the T1 predictions are reasonably accurate
(at least for a high-throughput screening technique) with an MAE of approximately
0.3 eV. This is an immense improvement over the initial MAE of 1.8 eV. Unfortu-
nately, a random sampling comparison cannot be done for T1, as this would require
twice as many calculations. Thus, we cannot isolate the effects of a larger training
dataset size from the implementation of active learning. However, the vast, 6-fold
improvement in MAE is promising, serving at least as a proof of the efficacy of AL.

Now that we have accurate ML models for predicting both S1 and T1 energies,
we can use the models to identify candidate chromophores within PCQC.

3.3.4 Identifying candidate chromophores

The PCQC database is immense, with 3.5M molecules, and screening molecules with
computational chemistry techniques would be prohibitively slow. Instead, we can
use the S1-ML and T1-ML models generated in this work to conduct HTVS. We
are specifically interested in identifying chromophores for TTA and SF. This entails
predicting the suitability of each molecule as a sensitizer (TTA) or emitter (TTA/SF),
based on the following suitability functions:

εsens = e−
∣∣∣1− ES1

ET1

∣∣∣ (3.3)

εemit = e−
∣∣∣2− ES1

ET1

∣∣∣ (3.4)

where ε indicates the suitability figure of merit (FOM), "sens" refers to sensitiz-
ers, "emit" refers to emitters, ES1 is the S1 energy, and ET1 is the T1 energy. This
definition is useful as it is normalized and therefore indicates the suitability of the
energy level alignment on a scale of 0 to 1. The emitter FOM is particularly useful as
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it allows simultaneous detection of both types of emitters (TTA and SF), which can
be distinguished in post-processing.

The ML models were run on all 3.5M molecules in PCQC to predict S1 and T1
energies, which are available on GitHub.142 Then, the suitability of each molecule as
a sensitizer or emitter was calculated. For post-processing, strict bounds were set for
TTA sensitizers, TTA emitters, and SF emitters, as described below:

sensTTA : 1.0 <
S1
T1

< 1.05

emitTTA : 1.9 <
S1
T1

< 2.0

emitSF : 2.0 <
S1
T1

< 2.1

(3.5)

Applying these strict bounds to the full dataset resulted in 307,216 sensitizers,
2763 TTA emitters, and 1694 SF emitters being identified. The SMILES, predicted S1
and T1 energies, and FOM for all identified chromophores are available on GitHub.142

Note that there are far fewer emitters identified than sensitizers. To further ex-
plore this phenomenon, a histogram of S1/T1 ratios is presented in Figure 3.17. As
seen, most molecules have S1/T1 close to 1. This drops off steeply for ratios less
than 1 (as this would be an inverse split and is rare), and gradually declines for
ratios greater than 1. To understand this decline, we turn to the theory of singlet-
triplet splitting, which states that a higher HOMO-LUMO overlap and smaller spa-
tial separation leads to a higher singlet-triplet split.143 Most materials will have small
HOMO-LUMO overlap, due to the difference in molecular properties characteristic
of donors vs. acceptors. This could help explain why there are fewer emitters iden-
tified than sensitizers.

FIGURE 3.17: Histogram of S1/T1 ratios, for ML-predicted S1 and T1 energies.

Of interest to this work are the near-IR (NIR) TTA materials, implying sensitizer
S1 between 1 and 1.2 eV, and emitter S1 between 1.9 and 2.4 eV.
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Using these strict limits, 56 NIR candidate sensitizers and 243 emitters were iden-
tified. Because there were only 300 total molecules identified as potential TTA sen-
sitizers and emitters, it was possible to run TD-DFT to confirm results. Of the 56
sensitizer candidates, 9 were confirmed to be suitable with TD-DFT, and 2 of those
were confirmed to lie within the NIR zone of interest. Similarly, of the 243 emitters,
17 were suitable, and 6 operated in the NIR region. The SMILES, predicted S1/T1
energies, predicted FOM, TD-DFT S1/T1, and TD-DFT FOM for these 8 molecules
are available in Appendix Table A.1, and the data for all 300 molecules is available
on GitHub.142

As seen, the model is better at predicting suitable molecules than the exact en-
ergies of the molecules. For extra flexibility, the bounds were expanded slightly to
0.7 to 1.5 eV for sensitizer S1 and 1.5 to 2.5 eV for emitter S1. This resulted in 276
near-IR sensitizer and 736 near-IR emitter candidates. These 1000 molecules were
then run with TD-DFT to confirm results. Of the 276 sensitizer candidates, 55 were
confirmed to be suitable with TD-DFT, and 7 of those were confirmed to lie within
the NIR zone of interest. Similarly, of the 736 emitters, 43 were suitable, and 7 oper-
ated in the NIR region. These 14 confirmed sensitizers and emitters are presented in
Figure 3.18. The SMILES, predicted S1/T1 energies, predicted FOM, TD-DFT S1/T1,
and TD-DFT FOM for these 14 molecules are available in Appendix Table A.2, and
the data for all 1000 molecules is available on GitHub.142

A few differences are evident – emitters are more likely to be aromatic and con-
tain oxygen, while sensitizers generally feature non-aromatic rings and CN atoms.
However, because there are relatively few identified molecules, it is difficult to de-
scribe general properties of each. It is therefore useful to expand the candidate space,
as described in the next section.

Expanding candidate space with GB-GA

Since only a few candidates were identified in the previous section, it would be
beneficial to expand the candidate space to identify more potential chromophores.
The PCQC database has been exhausted, and while it is possible to turn to other
large-scale databases, this is time-consuming and may potentially only lead to a few
candidate molecules, as the PCQC database did. To more efficiently generate novel
chromophores, we turn to genetic algorithms, specifically the graph-based genetic
algorithm (GB-GA) developed by Jensen,144 featuring crossovers and mutations de-
signed to generate novel "children" molecules from parents.

GB-GA has been shown to perform well in comparison with ML-based meth-
ods such as graph convolutional policy networks, with the added benefit of im-
proved computation time of several orders of magnitude.144 In 2020, GB-GA was
expanded to include absorbance calculated with xTB-sTDA.145 The workflow for
absorbance calculations was to generate 20 random conformations with RDKit, use
MMFF94 to minimize their energy, and choose the lowest-energy conformer as the
input structure.145 Then, the input structure was directly used with sTDA to get the
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(a)

(b)

FIGURE 3.18: Candidate (a) sensitizers and (b) emitters predicted by the ML model
and confirmed with TD-DFT to have desirable energy level alignment for NIR-to-

visible TTA with minimal energy loss.
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S1 energy and oscillator strengths, which are summed (after a Gaussian normaliza-
tion) to get the final molecular score,145 as shown in Equation 3.6:

Score = exp

[
−1

2

(
λ− λt

σ

)2
]
+

min(ω, 0.3)
0.3

(3.6)

where λ is the absorbance wavelength of the candidate molecule, λt is the target
wavelength, σ is the normalization factor, and ω is the oscillator strength. While this
is a rapid methodology capable of generating thousands of child molecules per run,
it is potentially inaccurate due to the limited ground state optimization conducted.
Ideally, xTB would be used for fast ground-state optimization, but it would be too
slow for the genetic algorithm. Instead, this study uses the ML models generated
in this work. Because the ML models directly predict energies from SMILES, they
circumvent the requirements of 3D initialization, conformer searching, and ground
state optimization, and can rapidly output energies.

The 7 candidate sensitizers and 7 candidate emitters were used as the initial pop-
ulation pool. For sensitizers, the target S1 was set to 1.1 eV and target T1 to 1.07 eV
(97% of S1). For emitters, the target T1 was set to 1.05 eV and the target S1 was set
to 2.1 eV. For Gaussian normalization, a σ of 25 nm was used for sensitizers and 50
for emitters. The oscillator strength term in Equation 3.6 was replaced with another
wavelength normalization for triplet energy. 50 generations of the genetic algorithm
were run, with a mutation rate of 0.05.

After running GB-GA hundreds of times, just over 10,000 candidate sensitizers
and 10,000 candidate emitters were generated, where candidates were defined as
achieving a score of 1.5 or higher. Because the population pool as small, there were
several duplicates – there were a total of 2,193 unique sensitizers and 3,575 emitters
generated. All candidate molecules are available on GitHub.142 The 8 top-scoring
sensitizers and emitters are shown in Figure 3.19, to give a sense of the types of
structures generated.

As seen, all molecules have precisely-tuned properties, with energies matching
the targets with ±0.01 eV accuracy or better. The sensitizer molecules are vastly
different from the population pool, while emitters are more similar to the input
molecules. This indicates GB-GA not only explores the local chemical space but is
capable of traversing significant distances in global chemical space. Suggested sen-
sitizers are larger molecules often with long chains of 6-C rings, while emitters are
more likely to have short chains and 5-C rings. Several emitters also have oxygen
atoms, while sensitizers primarily have carbon and nitrogen. While these are the
highest-scoring molecules, there were several molecules with high scores, with 322
sensitizers and 835 emitters having scores higher than 1.9.

To investigate the other suggested molecules and determine the general struc-
tures suggested by GB-GA to be preferable, it is useful to conduct a scaffold anal-
ysis. Scaffolds are essentially the bulk structure of the molecule, without including
any functional groups. Scaffold analysis was done with RDKit’s MurckoScaffold
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(a)

(b)

FIGURE 3.19: Candidate (a) sensitizers and (b) emitters generated with GB-GA to
have desirable energy level alignment for NIR-to-visible TTA with minimal energy
loss. Sensitizers targets were S1 = 1.1 eV and T1 = 1.07 eV, while emitter targets were

S1 = 2.1 eV and T1 = 1.05 eV. Energies in eV.
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(a)

(b)

FIGURE 3.20: 16 most common scaffolds for (a) sensitizers and (b) emitters generated
with GB-GA, to show general structures preferred by the algorithm. Only scaffolds

with more than 10 atoms are shown here.

module. Figure 3.20 shows the 16 most common scaffolds for sensitizers and emit-
ters. As seen, the overarching patterns described above for sensitizers and emitters
are upheld, i.e. the long 6-C ring chains in sensitizers and smaller emitter molecules
often with 5-C chains. Further, note here the larger diversity of sensitizer molecules,
i.e. the most common scaffold appears only 11 times while the most common emitter
scaffold appears 381 times. This could suggest a wider variety of sensitizer geome-
tries exist, while emitters may be confined to certain areas of chemical space.

Unfortunately, the generated molecules were not confirmed with TD-DFT. This
was due to computational expense – because the molecules are novel and there-
fore are not in PCQC, their ground-state structure is unknown. This would make
TD-DFT confirmation prohibitively expensive. Regardless, based on the analysis
in the previous section, a large fraction of these molecules should be suitable chro-
mophores.

3.3.5 Limitations of direct ML

While the ML model overall has high accuracy, the accuracy suffers for low-energy
molecules. This is depicted in Figure 3.21, which shows both (a) the MAE per en-
ergy interval and (b) the total number of molecules in that energy interval, for S1
energies using a 350k test set, and Figure 3.22, which also shows MAE and number
of molecules, but for T1 energies using a 10k test set.
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FIGURE 3.21: (a) MAE for all 10 1 eV energy intervals between 0 and 10 eV. (b) Num-
ber of molecules for each energy interval, for both the training and test sets. ML
model trained on 276k S1 datapoints, and tested on a randomly sampled 350k non-

overlapping test set in PCQC.

FIGURE 3.22: (a) MAE for all 10 1 eV energy intervals between 0 and 10 eV. (b) Num-
ber of molecules for each energy interval, for both the training and test sets. ML
model trained on 143k T1 datapoints, and tested on a randomly sampled 10k non-

overlapping test set in PCQC.

As seen, while the MAE is low for many mid-energy molecules, it increases dras-
tically as energy decreases. This is likely because comparatively fewer molecules (1-2
orders of magnitude) are in these energy intervals, so the ML model is not able to
learn as much about them. However, despite the MAE being high for the absolute
energy values, it is still able to predict ratios accurately, as seen in Figure 3.23.
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FIGURE 3.23: (a) MAE for all 10 0.33 S1/T1 intervals between 0 and 3. (b) Number
of molecules for each energy interval, for the test set. 2 ML models trained separately
on 276k S1 datapoints and 143k T1 datapoints were tested on the randomly sampled

10k test set presented previously.

From this figure, it is evident that the ML models are able to predict ratios be-
tween 1-2 with good accuracy, while ratios outside of this region may be less accu-
rate. This is again likely explained by the lack of datapoints in the outer regions,
with 1-2 orders of magnitude fewer points. Therefore, while the specific energies of
molecules predicted in this work may be slightly off, the ratios, and therefore their
suitability as sensitizers and emitters, should be accurate. Regardless, a different AL
workflow that prioritizes equal distribution of excited state energies could predict
absolute energies better.

The following section summarizes this chapter and provides some avenues for
future work.

3.4 Conclusions and Future Work

In this chapter, we have developed a machine learning model to accurately predict
excited state energies with a small, optimized training set. We generate this training
set in cycles, using active learning to identify high-uncertainty molecules among the
non-training molecules that should be added to the training set in the following cy-
cle. After optimizing the initial training set and the criteria for adding molecules per
cycle, we apply the AL workflow to generate ML models for S1 and T1 prediction.
After 8 cycles, S1 prediction had an RMSE of 0.248 eV and MAE of 0.16 eV, with
a training set of 276k molecules. In comparison, a randomly sampled training set
of 500k molecules had a higher RMSE of 0.287 eV. For T1 energies, after 1 cycle the
MAE decreased from 1.8 eV to 0.3 eV, with a training size of 143k molecules.
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After generating these ML models, it was possible to predict S1 and T1 ener-
gies for all 3.5M molecules in PCQC, rapidly (in approximately 18 hours using a
workstation with 24 CPUs). We can then identify potential TTA sensitizers, TTA
emitters, and SF emitters by screening this large database. We found thousands of
candidate chromophores across a wide variety of energies. Focusing on the near-
IR region, 1000 molecules were predicted to be suitable, and running TD-DFT con-
firmed 14 TTA sensitizers and emitters to be suitable. To expand the candidate space
of NIR-TTA materials, a graph-based genetic algorithm (GB-GA) was used, taking
the 7 sensitizers (or emitters) as the initial population pool and generating unique
child molecules over 50 generations. This was repeated hundreds of times, with the
10,000 highest-scoring molecules chosen. Because the initial population pool was
small, there were many duplicates, and 2,193 unique sensitizers and 3,574 emitters
were generated. All of the above data is available on GitHub.142

The identified or generated molecules constitute the main result of this work.
While only a few molecules were ultimately identified as potential NIR-TTA mol-
ecules, it is likely there were only a few such candidates in the entire PCQC database.
This is because, for sensitizers, only a few molecules (~700) have S1 energies between
0.5 and 1.5 eV in the database. To additionally satisfy the T1 requirements would
narrow down the pool significantly. Similarly, for emitters, only a few molecules
(~1000) have S1/T1 ratios around 2, and to satisfy the NIR T1 requirement would
reduce candidates significantly. Having to run TD-DFT on 3.5M molecules to iden-
tify 10s of potential NIR-TTA candidates would be wasteful, but the ML approach
presented makes the problem tractable.

There are some avenues of future work to mention here. While the 14 identi-
fied NIR-TTA molecules from PCQC were confirmed with TD-DFT, the 5.4k GB-GA
generated molecules were not able to be due to time constraints. However, due to
the presented accuracy of the ML model and the confirmation of a few molecules
within the suggested molecule pool, it is likely several of the molecules suggested
by GB-GA would be suitable. Regardless, an immediate next step would be to run
TD-DFT on the 5.4k generated molecules.

Another immediate avenue of future work that was limited by computation time
is continuing the T1 AL cycles. Because only 1 AL cycle was able to be completed
at the time of writing, the T1 accuracy is relatively high (0.3 eV) compared to the S1
accuracy (0.16 eV). Further T1 cycles should improve this accuracy.

Once finalized singlet and triplet training sets are generated, it could be possible
to expand beyond S1 and T1 to include the first 10 excited states. PCQC already
includes S1-10 data, and by setting the NStates keyword in Gaussian to 10, T1-10
energies can also be calculated. Then, the ML model could be changed from single-
task to multi-task, and tasked to predict all 10 energies simultaneously. Additionally,
adding the oscillator strength (OS) would also be useful. While this study is focused
on energy level alignment, improving the efficiency of the TTA process is also crit-
ical. OS is the probability of absorption or emission, so a high OS is important for
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both sensitizers and emitters. OS is also already output by TD-DFT, so would be an
easy addition to a multi-task ML model.

Beyond additions to the current workflow, there are also avenues to improve
the workflow. As discussed above, it would be beneficial to adjust the acquisition
function to ensure more low-energy molecules are included in the training set. This
would likely improve the accuracy of the ML model at low energies, where currently
the MAE is high. High S1/T1 ratio molecules also exhibit high MAE, so adding
these molecules should also improve accuracy in this regime. Therefore, adding
a weighted term for predicted energy and energy ratio in the acquisition function
should improve the overall performance of the model.

Finally, while this study focused on NIR-TTA molecules, it is also possible to
study other energy regions, and would require simple changes in the bounds set for
identification or the target energies requested for GB-GA. These molecules could be
useful for other applications beyond solar.

There are some inherent limitations with the ML approach to directly predict
excited state energies. First and foremost, ML acts as a black box, with a single
output of the desired property. Because of the limited output, it is difficult to develop
chemical intuition about the accuracy of results, beyond comparing the test molecule
to the training set (though even this may not be a great predictor).

Second, the ML model requires a large training set to output results. Overall, in
this study, a training set of 276,013 S1 energies and 133,186 T1 energies was required.
Typically, conducting 409k TD-DFT calculations would be prohibitively expensive.
This was possible in this work due to ground-state data already available in PCQC,
but for another dataset this may not be possible.

Therefore, it may be beneficial to instead use ML to calibrate a high-throughput
computational chemistry technique against high-accuracy techniques. High-throughput
computational chemistry techniques have well-defined methodology, so researchers
can better understand how accurate a technique might be in predicting certain prop-
erties of a molecule. Further, a calibration model would likely require less training
data, as the load on the ML model would be lightened to just having to shift the
calculated energy in the right direction. The following chapter explores this idea
further.
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Chapter 4

Calibrating xTB-sTDA excited state
calculations with ML

4.1 Motivation

As discussed in Section 2.1.1, xTB-sTDA is an ultrafast computational chemistry
technique for excited state calculations.105 Due to its speed, traditionally xTB-sTDA
has been used as the first step in high-throughput screening workflows, to filter out
large amounts of data into a few candidate molecules, for which properties can be
calculated using more advanced, time- and resource-intensive computational tech-
niques.

Although it is an extremely fast technique with calculations for most small molecules
completed in under a minute, the trade-off of high speed is potentially low accuracy.
For example, Grimme and Bannwarth, in their paper introducing xTB-sTDA, com-
pared vertical excitation energies calculated by xTB-sTDA against SCS-CC2/TD-
DFT reference values, and found a mean absolute error (MAE) between 0.34-0.48
eV and standard deviation (SD) between 0.44-0.59 eV, depending on the complexity
of input structure.105

Because of this potentially high error, if xTB-sTDA is used in high-throughput
screening, some suitable molecules may be screened out, or, vice versa, some un-
suitable molecules may be included in the candidate pool. To address this issue, the
accuracy of xTB-sTDA should be increased, by better calibrating its results against
either theoretical results from CC2/TD-DFT or experimental values. Some previous
works have attempted to do such calibration, as discussed in the next section.

4.1.1 Previous work in xTB calibration

In the initial paper introducing xTB-sTDA, Grimme and Bannwarth identified the
need for calibration, since sTDA does not include solvation or excited state relax-
ation, estimating results to be blue-shifted by 0.2-0.4 eV.105 When actually compar-
ing excitation spectra output by xTB-sTDA to experimental excitation spectra, they
blue-shifted results by 0.4-1.0 eV, depending on the input structure.105

However, shifting xTB-sTDA after seeing experimental results is not practical
for wide-scale use. Instead, there should be a way to calibrate xTB-sTDA purely
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computationally. Wilbraham et al. used a linear calibration technique to calibrate
the first singlet excited state energy (S1) output by xTB-sTDA, training a linear cal-
ibration model on 143 molecules and applying the model to 250k small aromatic
molecules.112 They were able to reduce the MAE from 0.258 eV for the original cal-
culations to 0.211 eV for the calibrated data.112

However, there are a few issues with this calibration. First, the plot for original
vs. calibrated data (Figure 4.1) still shows fairly high error for several molecules,
suggesting a simple linear calibration is not sufficient for high accuracy. Second,
training a calibration model on only 143 molecules may limit the accuracy of the
model when applied to larger datasets, for example the 250k small aromatic molecules
considered in the paper. Finally, while Wilbraham et al. also calibrate ionization
potential (IP) and electron affinity (EA), they do not calibrate further excited state
energy data such as triplet states, higher-level singlet states, or oscillator strength.

FIGURE 4.1: Linear calibration of S1 calculated by xTB-sTDA vs. TD-DFT (B3LYP).
Blue points show original data while green points show calibrated data. Black line
is linear fit of original data while red line is x = y line. From "Mapping the opto-
electronic property space of small aromatic molecules" by L. Wilbraham et al., 2020,

Communications Chemistry volume 3, Article number: 14.112

Thus, instead of using a linear calibration model, this work proposes training a
machine learning model for calibration of excitation energies output by xTB-sTDA.
Theoretically, an ML model should detect higher order patterns than a linear calibra-
tion model would. There is also precedent for calibration ML models in literature, as
presented in Section 2.2.2. The following section presents the methodology used to
generate a calibration ML model. First, we compare several ML models to choose the
best model architecture. We then generate a training set and discuss the workflow
used to train the ML model.
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4.2 Methodology

4.2.1 Comparing ML models

The 3 ML models considered were DeepChem’s146 GCN147 (DC GCN), DeepChem’s
MPNN148 (DC MPNN), and Chemprop’s MPNN123 (CP MPNN). The default, out-
of-the-box settings for each ML model were used, as described in Appendix Section
A.3. The input for the ML models was a CSV file with 3 columns: the SMILES
representation of the molecule, the S1 error between xTB-sTDA and TD-DFT, and
the T1 error. The goal of each ML model was to accurately predict the error between
xTB-sTDA and TD-DFT for a given molecule.

A test set was required to test different ML models. The VERDE materials database
(VerdeDB) was used for this purposes, as it is a carefully curated database for excited-
state properties of organic molecules.93 VerdeDB contains three classes of molecules:
porphyrins, quinones, and dibenzoperylenes, which are commonly used in appli-
cations in renewable energy and green chemistry.93 Of the 1500 molecules, around
1000 had both S1 and T1 energies available, so these were used as the test set. xTB-
sTDA was run on all 1k molecules (details of the workflow for running xTB-sTDA
are presented later in Section 4.2.3). The S1 and T1 errors between xTB-sTDA and
TD-DFT were then calculated and tabulated.

Instead of predicting both S1 and T1 error simultaneously, two separate single-
task models were generated. 10-fold cross-validation was conducted by splitting
the VerdeDB data 80%/10%/10% into train/validation/test sets. For each fold,
the trained ML model was used to predict error values of the test set. Then, each
molecule’s predicted error was added to the xTB-sTDA output to give a calibrated
energy, called the xTB-ML value. The xTB-ML values were compared to the TD-DFT
reference results by calculating an R2 score.

Figure 4.2 shows the results of comparison for T1 and S1 energies. As seen, all
ML models vastly outperform the linear calibration method. Between the ML mod-
els, CP MPNN performs the best for both T1 and S1, with an average R2 of 0.89 for
T1 calibration and 0.77 for S1 calibration. Note that the large variability in R2 can be
explained by the presence of outliers in the test set - since the test set was only com-
posed of 100 molecules (10% of 1k), a few outliers can vastly impact performance.

Figure 4.3 shows plots of original vs. CP MPNN-calibrated xTB data for (a) T1
and (b) S1 energies, with test data from all 10 folds compiled and with outliers re-
moved. The accuracy of the calibrated data is high, with an R2 of 0.964 and MAE of
0.098 for T1 and R2 of 0.851 and MAE of 0.130 for S1.

From this analysis, it is evident that CP MPNN performs well in calibrating xTB
results, even with its default settings. To see if the performance could be boosted fur-
ther, various improvements were attempted. These included increasing the number
of epochs to 100, conducting hyperparameter optimization, adding RDKit-calculated
features as input (in addition to the NN-calculated features), and conducting multi-
task training. The results from these improvements are shown in Figure 4.4.
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FIGURE 4.2: Comparison of various ML models in accurately calibrating xTB against
TD-DFT, quantified by R2 score. ’orig’ = original xTB data with no calibration, ’lin
calib’ = linear regression calibration of xTB data. All others are ML models as pre-
sented above. Blue bars are xTB-ML T1 energies while orange bars are xTB-ML S1

energies. R2 for original S1 data is -1.84 ± 0.65, the plot was truncated for clarity.

FIGURE 4.3: Plot of original xTB data (’orig’, red) and CP MPNN ML-calibrated xTB
data (’fixed’, blue) against reference TD-DFT data generated with Gaussian, for (a)
T1 energies and (b) S1 energies. Datapoints are all test data compiled across 10 non-

overlapping folds in cross-validation.

As seen, there are only small differences in performance between the default
settings and any potential improvements to the ML settings. For T1, hyperparam-
eter optimization provides minimal improvement, while including additional fea-
tures or adding multitasking reduces accuracy. For S1, hyperparameter optimization
marginally improves performance, and adding multitasking also seems to improve
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FIGURE 4.4: R2 scores of xTB-ML vs. TD-DFT for various improvements attempted to
CP MPNN. Bars labeled ’xtb’ are single-task and require 2 different models to predict
S1 and T1, while bars labeled ’multi’ are multitask and only 1 model predicts both
S1 and T1. ’default’ bars use the out-of-the-box hyperparameter settings with no
additional features. ’100ep’ bars use 100 epochs instead of the usual 30. ’hyperopt’
bars use hyperparameter optimization. ’rdkit’ bars include RDKit-calculated features

as additional inputs.

performance. There is thus a tradeoff in using multitasking as it could reduce ac-
curacy for T1 predictions but improve accuracy for S1, while also reducing overall
computation time. Because of the time savings of the multi-task model, this was
used for ML for the following sections. Hyperparameter optimization was ruled out
due to the operation being too expensive - optimization had to occur for each fold
independently and took several times longer than the actual ML run, while only
providing marginal improvements.

We have therefore chosen the multi-task CP-MPNN as our ML model architec-
ture. We can now develop a larger-scale ML calibration model. While the VerdeDB
database above was useful for comparison, it is small and not very diverse. Thus,
we need to generate a larger training set of molecules for which excited states are
relevant, as discussed in the following section.

4.2.2 Dataset descriptions

In order for the resulting ML model to be accurate and widely applicable, we need
to generate a large, versatile training dataset. Ideally, this would include molecules
similar to those of interest. Excited state energies such as singlet and triplet states
are currently of interest in triplet-triplet annihilation (TTA) and singlet fission (SF)
materials, so molecules involved in these processes would be best to include in the
training set. TTA/SF occurs at a wide range of energies, so it is important to not be
restrictive to certain energies in the training dataset.

For the test dataset, while it is always possible to choose a subset of the train-
ing dataset, it would be better to additionally have a blind test dataset to evaluate
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the generalizability of the ML model. Details regarding training and test dataset
generation are provided below.

SCOP-PCQC: Literature scraping of relevant molecules

As mentioned above, it would be ideal to include molecules involved in TTA/SF in
the training dataset. However, there is no existing database of such molecules, so
independent generation of such a database was necessary. The key characteristics of
this database are molecule name/information, as well as excited state energy data.

To get the names of molecules involved in TTA/SF, we created a literature scrap-
ing workflow. We used the SCOPUS API149 to obtain abstracts of articles tagged with
TTA/SF keywords. Then, we used ChemDataExtractor150 to extract molecule names
from the abstracts. We then used the PubChem API151 to convert molecule names
into PubChem CIDs. Finally, the PubChem API was used again to conduct a 2D
Tanimoto-coefficient based similarity search among PubChem molecules to expand
the molecular space of interest. Overall, this process allowed us to get molecular
information for all relevant molecules.

To obtain excited state energy data, we cross-referenced all of the PubChem CIDs
against PubChemQC (PCQC),65 a database of various quantum chemistry properties
of 3.5 million molecules, including the S1 energy. The T1 energy was not included in
PCQC, so it was independently generated with TD-DFT, by including the triplets

keyword in the Gaussian file provided by PCQC and running it on our own cluster.
The final count of this portion of the training set (named SCOP-PCQC) was ap-

proximately 10k molecules. Figure 4.5 shows the workflow used to generate the
SCOP-PCQC dataset.

As described above, SCOP-PCQC is a subset of the PubChemQC dataset. Pub-
ChemQC is itself a subset of all PubChem molecules, with some restrictions (only
certain atoms allowed, no SMILES containing periods, ignoring isotopes, neutral
charges) as detailed in Nakata and Shimazaki.65 Figure 4.6 shows plots of some
properties of PubChemQC molecules in comparison to all PubChem molecules. Fig-
ure 4.7 shows plots of properties of SCOP-PCQC molecules in comparison to Pub-
ChemQC molecules.

As seen in Figure 4.6, due to the restrictions in SMILES included in PubChemQC,
the molecules are relatively simple, with low molecular weight (MW), complexity,
heavy atom count, and number of rotatable bonds compared to all molecules in
PubChem. There is a wide variability in S1 energies in PubChemQC, in a bell curve
shape centered around 5 eV.

From Figure 4.7, we can see SCOP-PCQC is a representative subset of all of
PubChemQC. As seen in Figure 4.7(a), SCOP-PCQC seems to include the "core"
molecules, leaving out molecules with high complexity but low MW or vice versa.
SCOP-PCQC also covers all the options in Figure 4.7(b). Finally, SCOP-PCQC has a
similar distribution of S1 energy, as seen in Figure 4.7(c).
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FIGURE 4.5: Workflow used to generate the SCOP-PCQC dataset, starting with lit-
erature scraping for relevant molecules and ending with molecular information and
excited state energy data for 10k molecules. Blue boxes indicate data while orange
boxes indicate methodology. Green box indicates final data in SCOP-PCQC dataset.

It is useful here to conduct an analysis of the specific molecular substructures of
the SCOP-PCQC dataset, to understand the components and diversity of this train-
ing dataset. This is done in two ways - first by searching for specific substructures
in SCOP-PCQC, and second by mapping and clustering of molecules in chemical
space.

First, specific substructures known to be relevant to TTA-SF processes were search-
ed for in the dataset. Pyrene showed up as a substructure in 41 molecules, perylene
in 4, anthracene in 107, and naphthacene in 4. For a more comprehensive analysis,
the 143 molecules used for calibration in Wilbraham et al.112 (chosen as a represen-
tative sample of small aromatic molecules, discussed further in Section 4.2.2) were
selected as a test set of substructures. Of the 143 substructures, 68 had matching
molecules in SCOP-PCQC. Among the 68 substructures, an average of 165 matching
molecules were found in SCOP-PCQC. A boxplot of number of matching molecules
for the 68 substructures is shown in Figure 4.8. Because the mean (165) is higher than
the median (15), there are a few substructures with many matches in SCOP-PCQC,
creating a right-skewed distribution.

For further substructure analysis, it is possible to extract the scaffold (core struc-
ture) of each molecule in SCOP-PCQC and count the number of occurrences of each
scaffold in the dataset. This helps understand the diversity of chemical substructures
in SCOP-PCQC. RDKit’s Murcko scaffold implementation was used used for this
analysis. Figure 4.9 shows the 98 most common substructures in SCOP-PCQC, each
occurring in at least 10 molecules. We can again see the pyrene and anthracene sub-
structures here, as well as a variety of other diverse substructures, including many



Chapter 4. Calibrating xTB-sTDA excited state calculations with ML 71

FIGURE 4.6: Plots of properties of molecules in the PubChemQC database. (a) Shows
MW of molecules vs. complexity. Complexity is evaluated both by elements con-
tained and structural features including symmetry.152 (b) Shows number of rotatable
bonds vs. heavy atom (non-hydrogen) count. For both (a) and (b), black dots repre-
sent molecules in PubChem, while colored dots represent molecules in PubChemQC
– color is based on the S1 energy value. (c) Shows a histogram of all S1 energies from

the PubChemQC database.

aromatics. We can thus be confident in the accuracy of our ML model for similar
molecules.

The second way of analyzing the molecular composition of the SCOP-PCQC
dataset is through chemical space mapping. A UMAP embedding of 350k molecules
subsampled from the PCQC dataset is first generated, and the 10k molecules in
SCOP-PCQC are embedded into this global chemical space, as shown in Figure 4.10.
This is to show the distribution of molecules in global chemical space, and to get a
sense of overall coverage.

Next, the SCOP-PCQC molecules are embedded with t-SNE, and HDBSCAN is
used for clustering, as seen in Figure 4.11. Clustering allows further analysis of
molecular substructures, as molecules with similar skeletons would be neighbors in
chemical space. For substructure analysis, the molecules are split into 1000 clusters,
and the maximum common substructure (MCS) of each cluster is calculated. If the
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FIGURE 4.7: Plots of properties of molecules in the SCOP-PCQC dataset. x- and
y- axes of plots are the same as in Figure 4.6. For (a) and (b), black dots represent
molecules in PubChemQC, while colored dots represent molecules in SCOP-PCQC
– color is based on the S1 energy value. (c) Shows a histogram of S1 energies of
SCOP-PCQC molecules from the PubChemQC database. (d) Shows a histogram of

T1 energies calculated independently with TD-DFT in Gaussian.

FIGURE 4.8: Boxplot of substructure matching counts of 68 substructures (selected
from Wilbraham et al.’s112 calibration set) in SCOP-PCQC. Shows the inclusion of

important aromatic substructures in the SCOP-PCQC training dataset.

MCS has >10 atoms, it is shown in Figure 4.12.
As seen, the SCOP-PCQC dataset includes a diversity of molecules. From Fig-

ure 4.10, it is evident the dataset broadly covers the global chemical space. There
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are some areas of greater concentration, for example the left center and right lower
regions. This indicates more molecules in these regions are of interest in TTA/SF,
perhaps because existing TTA/SF molecules are derived from the same classes of
molecules. To better understand these clusters, Figure 4.12 shows the specific MCS
of various clusters, labeled by their cluster number. This is useful to understand
which molecular substructures correspond to specific regions of chemical space.

However, there are a few limitations of the SCOP-PCQC dataset. First, although
the dataset broadly covers the chemical space, there are a few areas with gaps, and a
few areas with higher concentration of molecules. This could be because the dataset
was generated from molecules relevant to TTA/SF, so there is a potential for it to
be homogeneous. Second, while it contains molecules with a wide variety of S1
energies, there are only a few with low S1 energy (<2 eV). These low-S1 molecules
would be more relevant to solar applications as typical solar cells have a bandgap of
around 1.1-1.5 eV. Thus, we need to supplement SCOP-PCQC.
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FIGURE 4.9: Most common scaffolds in the SCOP-PCQC dataset, with the number of
occurrences displayed below each scaffold. Scaffolds generated with RDKit’s Murcko

scaffold implementation.



Chapter 4. Calibrating xTB-sTDA excited state calculations with ML 75

FIGURE 4.10: Embedding of SCOP-PCQC data (red) in the global PCQC chemical
space (grey). Shows broad coverage of the global chemical space with some areas
with greater concentration of molecules. A UMAP model created on 350k molecules
of PCQC was used to predict the locations of the 10k SCOP-PCQC molecules. UMAP
was chosen for this embedding due to its speed - tSNE would be too slow for this

many molecules.
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FIGURE 4.11: t-SNE embedding of 10k SCOP-PCQC molecules with HDBSCAN used
for clustering. Partial global embedding was done with 10k molecules subsampled
from PCQC for reference (not shown). Note that the overall structure of the chemical
space resembles the UMAP embedding. HDBSCAN generates a soft cluster with float
values ranging from 0 to 10. Of the 10k molecules in the dataset, approximately 7.5k

were able to be clustered and are shown in the Figure.
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FIGURE 4.12: Maximum common substructures (MCS) of the 98 (/1000) clusters that
had MCS with more than 10 atoms. Number below each MCS corresponds to the

cluster number, ranging from 0 to 10, corresponding to the colorbar in Figure 4.11
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SCOP-PCQC Expansions

The first supplement to SCOP-PCQC is to add low excited state energy molecules
from PCQC. This is done by splitting the molecules in PCQC into bins of width 0.1
eV, and sampling 100 molecules from each bin between 0 and 2.5. Figure 4.13 shows
the results of this expansion.

FIGURE 4.13: Histogram showing the expansion of SCOP-PCQC to include low-S1
molecules. Blue bars indicate original SCOP-PCQC data while green bars indicate

low-S1 expansion data.

While this addition was motivated by visually inspecting the S1 distribution, this
may not be the most effective methodology. For example, some molecules may be
similar to existing molecules in the training set, reducing their utility, or the addi-
tions could be too clustered in chemical space to give a useful addition. To more
intelligently expand the SCOP-PCQC dataset, we turn to our analysis in Chapter 3,
with active learning for dataset generation. In this section, we supplement the initial
SCOP-PCQC dataset based on the active learning workflow, i.e. generating an ML
model from SCOP-PCQC and using the model to measure epistemic uncertainty on
the remaining PCQC molecules. In this way, we get a sense of which molecules the
ML model has difficulty predicting, and can add these molecules to the training set.

As discussed in Chapter 3, the AL workflow was run separately for S1 (Sec-
tion 3.3.1) and T1 (Section 3.3.3) predictions, giving two different ML models. The
molecules in the first AL cycle for both S1 (64k molecules) and T1 (107k molecules)
were also used as supplements to SCOP-PCQC.

QM-symex-10k

To ensure broader applicability of our model beyond the PCQC dataset, it was im-
portant to include another source of data in our training set. As seen in Section
2.1.1, unfortunately there are only a few excited state databases available, especially
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for triplet energies. While it is possible to independently generate triplet data, as
we did with SCOP-PCQC, to save computation time it would be best to choose a
database with triplet energies calculated. Of the triplet energy databases available,
QM-symex is the largest and most versatile. To balance the SCOP-PCQC dataset,
10k molecules were randomly sampled from QM-symex to form the QM-symex-10k
dataset. Figure 4.14 shows plots of some properties of the QM-symex-10k dataset,
including molecular weight, complexity, number of rotatable bonds, heavy atom
count, and S1/T1 energies.

FIGURE 4.14: Plots of properties of molecules in the QM-symex-10k dataset. (a) Scat-
ter plot of molecular weight vs. complexity, colored by S1 energy. (b) Plot of number
of rotatable bonds vs. heavy atom count (non-H), also colored by S1 energy. His-

tograms of (c) S1 and (d) T1 energies.

As seen in Figure 4.14, QM-symex-10k includes more molecules with low exci-
tation energies, especially for T1. Quantitatively, QM-symex-10k has 776 molecules
with S1 < 2 eV and 5877 molecules with T1 < 2 eV. In addition, QM-symex-10k has
larger and more complex molecules – SCOP-PCQC has a maximum complexity of
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around 750 and a maximum MW of around 400, but QM-symex-10k molecules reach
complexities of 2000 and MWs of 2500, as well as heavy atom counts of up to 80.
Finally, QM-symex-10k helps increase the diversity of the dataset as it does not ex-
plicitly include molecules relevant for TTA/SF.

Now that we have our training datasets, we have to generate a test dataset to
evaluate the accuracy and applicability of our ML model.

Blind test datasets

As discussed in Section 4.1.1, one of the few papers in xTB calibration against TD-
DFT data was by Wilbraham et al.,112 in which they calibrated IP, EA, and S1 data
output by xTB against TD-DFT data with a linear model. It therefore makes sense to
use this calibration dataset as a test set for our study, to see if our ML methods can
improve the calibration. This dataset is called "MOPSSAM" as an acronym of their
study ("Mapping the optoelectronic property space of small aromatic molecules"112)
and contains xTB-sTDA calculated, linearly calibrated, and TD-DFT calculated S1
energy for 143 molecules. Since we are interested in triplet energies, T1 energies were
independently calculated for the 143 molecules. To verify the workflow of TDDFT
calculations in this study was equivalent to that used in Wilbraham et al., S1 energies
were first calculated independently and compared to the previous work. As shown
in Appendix Figure A.2, there is very little deviation in our results. When calculating
T1 energies, the only difference in workflow is adding the triplets keyword in the
Gaussian input. Therefore, we can be certain that the generated T1 data is valid.
This preliminary test set is called MOPSSAM 143.

To expand the test dataset, 1k additional molecules were randomly chosen from
the 250k molecules considered in their study, and S1/T1 energies were indepen-
dently calculated for these molecules with TDDFT. This expanded dataset is called
MOPSSAM 1000.

Finally, to test the broader applicability of the model, molecular excited state in-
formation was taken from Fallon et al.’s paper on designing singlet fission materials
based on indolonaphthyridine thiophene (INDT) derivatives.52 As a singlet fission
study, it featured S1 and T1 calculations with TD-DFT using B3LYP/6-31++G** and
the Tamm-Dancoff approximation on almost 10k molecules.52 Because the molecules
included in the INDT dataset are substantially different from MOPSSAM, this should
be a useful test set to determine the generalizability of the ML model.

With these training and test datasets, an ML model can be generated for calibra-
tion of xTB results, as detailed in the following section.

4.2.3 xTB-ML calibration workflow

An overview of the xTB-ML calibration workflow is presented in Figure 4.15. Since
the training datasets already have TD-DFT calculated S1 and T1 data, we can directly
extract these, but we need to generate xTB-sTDA data. Starting with the SMILES
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string, we generate an initial 3D molecular structure with OpenBabel’s gen3d function.124

This function has 4 parts: (i) preliminary 3D structure generation with OBBuilder,
(ii) 250 steps of steepest descent geometry optimization with MMFF94, (iii) 200 iter-
ations of a conformer search, with 25 steps of steepest descent optimization for each
conformer, and (iv) 250 steps of conjugate gradient geometry optimization on the
lowest energy conformer.153,154 We then optimize the initial 3D structure with xTB
geometry optimization using GFN2-xTB and a tight threshold. The resulting final
3D ground-state structure is then run through xTB-sTDA to get excited state (S1, T1)
data. Then, the error is calculated between TD-DFT and xTB-sTDA. Finally, the error
and SMILES string for each molecule are passed to the ML model as input.

FIGURE 4.15: Workflow for xTB-ML calibration. Blue boxes represent data, red
boxes represent intensive calculations, yellow boxes represent quick calculations, and
green box represents final result. Starting with the training datasets, the TD-DFT and
SMILES data are directly extracted. The SMILES strings are converted to 3D molec-
ular structures with OpenBabel and xTB, and then excited state calculations are con-
ducted with xTB-ML. Then the error is calculated between xTB-sTDA and TD-DFT

and fed as input to the ML model, along with the SMILES string.

Note here that even though a 3D structure must be generated in order to get xTB-
sTDA data, it is not used as input in the ML model. This is due to the characteristics
of ML model used (Chemprop’s MPNN) which simply takes SMILES strings as in-
put. An avenue for future work could be to use the full 3D molecular structure as
input to the ML model.

While the xTB portion of this workflow is standardized, the TD-DFT portion may
not be, as discussed in the following subsection.

Comparison of TD-DFT settings

The TD-DFT data is sampled directly from existing databases, but the steps used to
generate this data can differ. These differences include: (a) different ways of gener-
ating initial 3D coordinates, (b) different DFT settings used to optimize the ground
state geometry, and (c) different TD-DFT settings (such as functionals, basis sets, op-
timization tightness, and solvation models) used to calculate excited state energy.
Table 4.1 compares these settings for the 3 databases considered in this work (Pub-
ChemQC, QM-symex, and MOPSSAM).

As seen in Table 4.1, the three databases use different techniques in generating
excited state data. They all use different methods for generating 3D coordinates and
conducting conformer analysis. There are also similarities, however, as they all use
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TABLE 4.1: Comparison of settings for the TD-DFT workflow in the 3 databases con-
sidered in this study. The 3 databases use different 3D coordinate generation tech-
niques, but all use the B3LYP functional for (TD-)DFT, despite using different basis

sets. MOPSSAM is the only study that used a solvation model.

PubChemQC QM-symex MOPSSAM

3D coord gen
OpenBabel

PM3
STO-6G

Corina
PM7

RDKit
EKTDG

MMFF94

DFT
B3LYP

6-31G(d)
B3LYP

6-31G(2df,p)
B3LYP

aug-cc-pVTZ

TD-DFT
B3LYP

6-31+G(d)
B3LYP
6-31G

B3LYP
aug-cc-pVTZ

Solvation None None
Benzene
COSMO

the B3LYP functional for (TD-)DFT, despite using different basis sets. MOPSSAM is
the only dataset that uses a solvation model.

While the goal in this study is to combine the two training sets (SCOP-PCQC and
QM-symex-10k) into one overarching ML model, it is unclear whether the differing
settings between the two datasets will impact results. This is why we use MOPSSAM
as a blind test set to determine the applicability of the generated ML model.

Based on the workflow and considerations outlined above, input data can be
generated for the ML model. The following section provides details of the ML mod-
els generated and results for calibration accuracy.

4.3 Results

First, ML models are trained separately on the SCOP-PCQC and QM-symex-10k
datasets to determine the accuracy of calibration independently on these datasets.
10-fold cross-validation results are presented in the first two subsections. As a con-
sequence of cross-validation, the test sets are subsets of the entire dataset. To test the
broader applicability of our methodology, an overarching ML model is trained with
all 20k molecules and blind tested on MOPSSAM data, as presented in the third sub-
section. Finally, expanded ML models are trained and blind tested on MOPSSAM
data, also presented in the third subsection.



Chapter 4. Calibrating xTB-sTDA excited state calculations with ML 83

4.3.1 SCOP-PCQC

Figure 4.16 shows the results of 10-fold cross-validation calibration on the SCOP-
PCQC dataset, for both S1 and T1 energies. While the original data has low accu-
racy when compared to TD-DFT results, the linear calibration improves the accuracy
slightly. However, there is not a clear linear shift due to some groups of molecules
located farther from the line of best fit. This creates large errors for some molecules
– this is most clearly seen for xTB T1 energies between 5-6 eV and between 6-7 eV
for TDDFT.

Adding ML boosts the accuracy further. This is likely because ML allows for
higher-order pattern detection, allowing groups of molecules to shift locally instead
of having to follow a global calibration rule. The MAE for ML-calibrated xTB-sTDA
for both S1 and T1 is ∼0.20 eV. The RMSE (not listed) is ∼0.37 eV for both.

FIGURE 4.16: Plots of xTB calibration of the SCOP-PCQC dataset for (a) S1 and (b)
T1 energies. Red dots are original data with no calibration, green dots are linearly
calibrated data, and blue dots are calibrated with ML. 10-fold cross-validation was
conducted, meaning all data points shown are test points predicted by an ML model
trained on the other 90% of data. Inlaid box shows quantitative measurements of
accuracy for original, linearly calibrated, and ML calibrated data. (Best R2 is 1 while

best MAE is 0.)

4.3.2 QM-symex-10k

Conducting the same analysis on QM-symex-10k produces similar results. Figure
4.17 shows the original data as well as the results of 10-fold cross-validation on
linear- and ML-calibrated xTB-sTDA. Again, the linear calibration has some signifi-
cant limitations, with some datapoints not being able to shifted enough (clearly seen
for low TDDFT S1 energy) or shifted too much (clearly seen for xTB S1 energies
around 4eV and TDDFT S1 energies above 4eV). The T1 plot similarly shows some
groups of molecules that are clearly shifted away from the line of best fit.
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The ML calibration boosts accuracy for both S1 and T1, likely for the reasons
discussed above. The MAE for ML-calibrated xTB-sTDA for both S1 and T1 is∼0.20
eV, while the RMSE (not listed) is ∼0.30 eV.

FIGURE 4.17: Plots of xTB calibration of the QM-symex-10k dataset for (a) S1 and (b)
T1 energies. Red dots are original data with no calibration, green dots are linearly
calibrated data, and blue dots are calibrated with ML. 10-fold cross-validation was
conducted, meaning all data points shown are test points predicted by an ML model
trained on the other 90% of data. Inlaid box shows quantitative measurements of

accuracy for original, linearly calibrated, and ML calibrated data.

As seen in the two subsections above, when testing the ML model on subsets of
the dataset in question, the ML model performs exceedingly well. However, there
is the possibility that the ML model only performs well because the datasets are ho-
mogeneous, so similar molecules to those in the test set are included in the training
set. To evaluate the broad applicability of our methodology, we use a blind test set
of molecules not included in either of the datasets above.

4.3.3 Blind tests

MOPSSAM 143

An overarching ML model was created by combining the 10k SCOP-PCQC molecules
with the 10k QM-symex-10k molecules into a 20k molecule training dataset. A 10-
fold cross-validation ML model was trained with these 20k molecules and tested
on the 143 molecules in MOPSSAM. As seen in Figure 4.18, the ML calibrated xTB-
sTDA data matches TD-DFT values better than the linearly calibrated data. While
the data are sparse, there are a few regions where the improvement is clearly visi-
ble, for example between 4.5-6.5 eV for sTDA S1, where the linear calibration over-
corrects while the ML model performs better. In contrast, for low sTDA S1 ener-
gies, the linear calibration under-corrects, with the calibrated values very close to



Chapter 4. Calibrating xTB-sTDA excited state calculations with ML 85

the original values, while the ML model is more flexible. The MAE of ML-calibrated
xTB-sTDA is 0.163 eV while the RMSE (not listed) is 0.24 eV for S1 energies. For T1
energies, while the ML model does outperform the linear calibration with the MAE
measurement, the R2 is very similar for both techniques. This is likely because xTB
nearly always over-predicts the T1 energy, so calibrating it only requires shifting in
one direction, which makes linear calibration well-suited for the task. For S1 en-
ergies, there are both instances of over- and under-prediction, which makes linear
calibration less applicable and motivates the need for an ML model.

FIGURE 4.18: Plot of xTB calibration of the 143 MOPSSAM molecules for (a) S1 and
(b) T1 energies. Red dots are original data with no calibration, green dots are lin-
early calibrated data, and blue dots are calibrated with ML. Training data was the
20k molecules in SCOP-PCQC + QM-symex-10k, and test data was the 143 molecules
shown here. Inlaid boxes show quantitative measurements of accuracy for original,

linearly calibrated, and ML calibrated data.

To improve these results, several expanded ML models were tested, as discussed
in Section 4.2.2. First is the low-S1 PCQC expansion, choosing 2.5k molecules with
low S1 energies to supplement the existing 20k training set. The second expansion
uses the AL S1 cycle 1 molecules (64k) added to the 20k training set. The third
expansion uses AL T1 cycle 1 molecules (107k) added to the 20k training set. The
fourth expansion uses both T1 and S1 AL cycle 1 molecules (171k) plus the initial
20k training set. The fifth expansion uses all QM-symex molecules (120k) plus the
initial 20k training set. The final expansion uses both AL cycle 1 molecules plus
all QM-symex molecules (280k), added to the initial 20k training set. The figures
showing the ML calibration plotted against original data and linear calibration are
in Appendix Section A.5. Table 4.2 shows the results of all of these training sets
tested on MOPSSAM 143.

As seen in this table, adding the low S1 molecules reduces the predictive power
of the ML model for the S1 energies but improves the T1 model very slightly. Thus,
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TABLE 4.2: Accuracy of various ML model training set expansions on predicting
MOPSSAM excited state energies

Model
Training Set

Size
S1 R2 T1 R2 S1 MAE T1 MAE

No calibration N/A 0.80 0.12 0.26 0.59

Linear calibration 143 0.86 0.88 0.21 0.18

SCOP-PCQC +
QM-sym-10k

18,965 0.91 0.88 0.16 0.17

SCOP-PCQC +
QM-sym-10k + LowS1

21,440 0.80 0.87 0.21 0.16

SCOP-PCQC +
QM-sym-10k + ALS1

77,910 0.90 0.90 0.18 0.15

SCOP-PCQC +
QM-sym-10k + ALT1

126,065 0.86 0.90 0.19 0.13

SCOP-PCQC +
QM-sym-10k + ALS1

+ ALT1
181,629 0.88 0.91 0.18 0.13

SCOP-PCQC +
QM-sym-10k +

QM-symex
138,435 0.91 0.90 0.17 0.14

SCOP-PCQC +
QM-sym-10k + ALS1
+ ALT1 + QM-symex

301,099 0.90 0.93 0.17 0.13

although the ML model was trained on a larger dataset, we can infer the composi-
tion was inadequate for predicting excited state energies. Similarly, adding the AL
S1 data failed to improve the ML model’s S1 predictions, while the T1 predictions
did improve slightly. Adding the AL T1 molecules vastly improved the predictive
performance for T1 energies, reducing the MAE from 0.17 to 0.13 eV, while the S1
prediction became slightly worse from 0.16 to 0.19 eV. Adding both AL S1 and AL
T1 molecules was a decent compromise, keeping the T1 MAE low at 0.13 and the
S1 MAE at 0.18. Transitioning to the QM-symex dataset, adding all 120k molecules
improves the T1 MAE and keeps the S1 MAE essentially the same. Finally, adding
all expansions (AL S1, AL T1, and QM-symex) showed the lowest T1 MAE of 0.13
eV, but had limited impact to S1 MAE (0.17 eV).

From this data, it is clear that adding additional molecules helps improve the T1
predictions, but this is not reflected in S1 predictions. The reasoning is not imme-
diately clear, but there are a few possible explanations. First is that the T1 energies
are more or less linearly calibrated, but molecules lie on different lines, so adding
additional molecules may help refine this calibration. In contrast, S1 energies may
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be distributed around the x = y line uniformly and adding additional points may
not help. Another explanation is that the initial 20k training set may already have
enough similar molecules to MOPSSAM 143 to have high predictive power, and
adding additional molecules may unnecessarily obfuscate the model. The additional
molecules may help cover more of the global chemical space but not necessarily im-
prove performance for the 143 molecules considered here. Therefore, further analy-
sis is required to determine which model is the best. 2 models, SCOP-PCQC + QM-
sym-10k and SCOP-PCQC + QM-sym-10k + ALS1 + ALT1 + QM-symex, are chosen
for further analysis, and are referred to as xTB-ML-20k and xTB-ML-300k, based on
their training size, for simplicity. The first alternative test set used is MOPSSAM
1000.

MOPSSAM 1000

Because these 143 molecules are sparse, to test our ML model further we sample 1k
molecules from the 250k molecules in MOPSSAM’s test set. S1 and T1 values were
calculated with TD-DFT and xTB-sTDA. The xTB values were then calibrated with
a linear model trained with the 143 molecules in MOPSSAM 143, to be consistent
with Wilbraham et al.’s methodology.112 ML-calibrated xTB values were calculated
using both the xTB-ML-20k and xTB-ML-300k models. Figures 4.19 and 4.20 show
the results of this test.

FIGURE 4.19: Plot of xTB calibration of 1k randomly selected MOPSSAM molecules
for (a) S1 and (b) T1 energies. Trained on 20k molecules in SCOP-PCQC + QM-symex-

10k and tested on MOPSSAM 1000.

As seen, both ML models outperform linear calibration. xTB-ML-300k does
slightly better for S1 prediction, and much better for T1 prediction. We again vi-
sually see the linear shift required for T1 calibration, while S1 calibration is not as
clear. The 300k model specifically does better at lower energies (<2 eV), effectively
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FIGURE 4.20: Plot of xTB calibration of 1k randomly selected MOPSSAM molecules
for (a) S1 and (b) T1 energies. Trained on 300k molecules in SCOP-PCQC + QM-

symex-10k + AL S1 + AL T1 + QM-symex and tested on MOPSSAM 1000.

removing outliers. Both ML models are able to accurately calibrate energies without
over- or under-correcting, while the linear calibration again tended to over-correct
high energies and under-correct low energies.

It seems that xTB-ML-300k outperforms the 20k version, but to confirm this it is
useful to test on a different dataset.

INDT

To test the broader applicability of the xTB-ML models, we use the INDT blind test
dataset. 1k molecules were sampled from this dataset for ease of viewing. Figures
4.21 and 4.22 show the results of this test.

For this dataset, xTB-ML-20k vastly outperforms xTB-ML-300k, and both defini-
tively outperform linear calibration. The excited state energies of these molecules
are similar, so the linear model is unable to discern the nuances in calibration. xTB-
ML-20k is able to shift the data so that it is more tightly bound around the x = y
line. In contrast, the xTB-ML-300k model is unable to shift sufficiently – this differ-
ence is most clearly seen on the right side of S1 calibration, where the blue points
are overlapping the green and red points, indicating insufficient calibration. The
difference in performance could be because there are more INDT-like molecules in
the 20k training set, which allows xTB-ML-20k to calibrate more accurately. This
is promising as it indicates the training set generation technique for 20k is compre-
hensive and includes molecules potentially of interest to TTA and SF. Overall, both
models outperform linear calibration and are able to keep the MAE at or below 0.2
eV, with the xTB-ML-20k model performing its best at 0.13 eV.
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FIGURE 4.21: Plot of xTB calibration of 1k randomly selected INDT molecules for (a)
S1 and (b) T1 energies. Trained on 20k molecules in SCOP-PCQC + QM-symex-10k

and tested on INDT.

FIGURE 4.22: Plot of xTB calibration of 1k randomly selected INDT molecules for (a)
S1 and (b) T1 energies. Trained on 300k molecules in SCOP-PCQC + QM-symex-10k

+ AL S1 + AL T1 + QM-symex and tested on INDT.

As seen, there are datasets where xTB-ML-20k performs better, and datasets
where xTB-ML-300k performs better. On average, compiling MAEs for all 6 datasets
considered (MOPSSAM 143, MOPSSAM 1000, and INDT, for both S1 and T1), the
20k model has an MAE of 0.157 eV while the 300k model has an MAE of 0.158 eV.
Given this small difference, it is difficult to choose a model for further study. Con-
sidering the 20k model performed better for the external INDT dataset, and as it
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requires less training data and therefore would be more applicable to future studies
employing ML calibration of datasets, this model is used in the following sections,
and is referred to as xTB-ML.

Overall, in this section we have shown the greater accuracy of our ML-calibrated
xTB-sTDA results in comparison to raw or linearly calibrated data, when compared
to a TD-DFT benchmark. This improvement is first evident in test sets composed of
subsets of the training datasets, but is shown to be upheld with external test sets as
well. Notably, the blind test sets used had different TD-DFT settings (different initial
3D structure generation, different basis set, inclusion of solvation model) but the ML
calibration still improved the accuracy of results.

4.3.4 Coupled cluster calibration

The natural next question is whether the xTB-ML model can be applied to different
TD-DFT functionals or different computational techniques altogether such as CC2
or ZINDO. To test this, we ran xTB-ML on QM8,83,91 which includes S1 excited state
energies at the PBE0/def2-SVP, PBE0/def2-TZVP, and CAM-B3LYP/def2-TZVP lev-
els of theory for TD-DFT as well as the RI-CC2/def2-TZVP coupled-cluster level of
theory, and QM7b,84,90 which includes S1 energies at the ZINDO level of theory. Un-
fortunately, as seen in Appendix Section A.6, xTB-ML does not improve accuracy.
Therefore, it can be assumed that xTB-ML would best be applied when calibrating
xTB results against TD-DFT calculations with the B3LYP functional.

However, it is possible to apply the same calibration methodology presented in
this work to calibrate xTB against CC2, similar to how previously xTB was calibrated
against TD-DFT. For this, we use the CC2 values compiled in QM8, randomly sam-
pling 10k molecules as the training set and using the other 11.5k as the test set. This
time, because of the smaller dataset, we use 20-fold cross-validation with 95%/5%
train/validation splits. This helps ensure most of the data is used in training. The
new model is termed xTB-CC-ML to distinguish it from the previously generated
xTB-ML model.

Figure 4.23(a) shows the results of the comparison, with the inlaid box display-
ing measurements of accuracy for both methods. As seen, adding the ML calibration
to xTB results vastly improves results, reducing the MAE by 66%. For compari-
son, Figure 4.23(b) shows the results of TD-DFT calculations on the same test set of
molecules. As seen, xTB-CC-ML has higher accuracy than TD-DFT calculations for
the 11.5k test set, using either R2 or MAE as the metric.

To test the impact of training size on accuracy, 8 different ML models were gener-
ated with training sizes ranging from 100 to 15,000. The models were then predicted
on the remaining molecules in QM8 not used in the training set. The MAE of the
test set (against CC2 values) was compared to the MAE of PBE0/def2-TZVP and
CAM-B3LYP/def2-TZVP, as shown in Figure 4.24.

As seen, a training size of approximately 750 molecules allows xTB to achieve
similar accuracy to PBE0. It is more difficult to match CAM-B3LYP’s accuracy, but
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FIGURE 4.23: (a) Plot of xTB calibration against CC2 with 10k training set and 11.5k
test set (shown). Red dots indicate original xTB calculations while green dots indicate
calibrated xTB data. (b) Plot of TD-DFT calculated values against CC2 values, for

accuracy comparison. Black dashed line in both plots indicates x = y line.

FIGURE 4.24: (a) Plot of xTB calibration against CC2 with 10k training set and 11.5k
test set (shown). Red dots indicate original xTB calculations while green dots indicate
calibrated xTB data. (b) Plot of TD-DFT calculated values against CC2 values, for

accuracy comparison. Black dashed line in both plots indicates x = y line.

this is achieved at a training size of around 3750. At the largest training size con-
sidered (15k), the xTB-CC-ML calibrated molecules vastly outperform both TD-DFT
results, with a 47% reduction in MAE for PBE0 and 27% reduction in MAE for CAM-
B3LYP.
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These are incredibly promising results, showing machine learning can help high-
throughput techniques such as xTB-sTDA compete with high-accuracy methods such
as TD-DFT. However, the xTB-CC-ML model may not be as generalizable as xTB-
ML, due to the smaller (10k), less diverse (only small molecules with up to 8 heavy
atoms) training set. For this reason, xTB-ML will be used in the following sections
instead of xTB-CC-ML. Regardless, xTB-CC-ML serves as a interesting proof of con-
cept that can be expanded further in the future, perhaps with additional CC2 calcu-
lations on more diverse molecules.

Regardless, now that we have a functioning ML model for improving the results
output by xTB (xTB-ML), we can use the model for various applications. The follow-
ing sections will apply the model to calculate excited states in large databases and
map inaccuracies of xTB-sTDA in chemical space, after a brief detour to discuss the
benefits of xTB-ML versus direct ML.

4.3.5 Comparison to direct ML

Before continuing with applying the xTB-ML model, we first must prove such a
calibration model is more accurate than a direct ML model when predicting excited
state energies. The reasoning is that xTB gets the excited state energy in the right
region, so the load on the ML model is lower as it simply needs to nudge the value
in a certain direction. To test this theory, we generate an ML model trained on the
same 20k molecules as above but instead directly set the energy as the objective, and
test the model on MOPSSAM 143. Figure 4.25 shows the results.

FIGURE 4.25: Comparison of ML-calibrated xTB results vs. directly predicted en-
ergies with ML. Red dots are original data with no calibration, green dots are ML
calibrated xTB-sTDA data, and blue dots are directly generated with ML. Training
data was the 20k molecules in SCOP-PCQC + QM-symex-10k, and test data was the
143 molecules shown here. Inlaid box shows quantitative measurements of accuracy

for original xTB-sTDA, ML calibrated xTB-sTDA, and direct ML data.
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As seen, the performance of the directly trained ML model is vastly lower than
the ML-calibrated xTB data. The ML model performs worse than xTB itself in some
metrics, and the ML model performs worse than the linear calibration model in all
metrics. Thus, calibrating xTB with ML gives much higher accuracy than using ML
to directly predict energies.

The one benefit of direct ML prediction is the time savings. Both xTB-ML and
direct ML require training an ML model – for the 20k training set presented in this
work, training took approximately two hours. Direct ML has a much faster predic-
tion, however – it predicted the S1 energies of the 143 molecules above in less than
1 minute, and the S1 properties of all 250k molecules considered in MOPSSAM in
1 hour and 12 minutes (on a workstation with 24 CPUs, 188G memory). For com-
parison, xTB-ML computes properties of approximately 1500 molecules per hour
when parallelized over 4 nodes with 24 CPUs and 250G memory each. Despite di-
rect ML being several orders of magnitude faster than xTB-ML, the low accuracy of
the method reduces its efficacy.

Now that we have shown the xTB-ML model outperforms direct ML models, we
can move on to using our xTB-ML model. The first section will be on applying our
model to the 250k molecules in MOPSSAM.

4.3.6 Calculating excited state energies for 250k molecules

We can now apply our xTB-ML model to the 250k molecules considered in Wilbra-
ham et al.112 to see how different the S1 and T1 energies would be. The results are
shown in Figure 4.26. For S1, the ML calibrated data seems to be generally centered
around the original data, and the linear calibration is minimal until higher energies.
For most molecules, there is approximately a ±0.5 eV difference between linearly
calibrated and ML calibrated values, with the deviation decreasing at lower ener-
gies. However, for higher energies, the linear calibration starts to underestimate in
comparison to the ML calibration. This is reflected in Figure 4.18, where the linear
calibration shifts the data too far to the left for high energies. The T1 calibration is
more significantly different between ML and linear calibrations. At low energies,
the linear model does not change the energies much, while the ML model lowers
the energy. In contrast, at high energies, the linear model decreases the energy by as
much as 1 eV, while the ML model is more conservative in its calibration. Both ML
and linear calibration down-shift the calculated energy for most molecules, which
is in line with expectations. Note that because TD-DFT data was not calculated for
these 250k molecules, we cannot compare the calibration to ground truth, but based
on the metrics presented in Section 4.3, it is likely the ML-calibrated values are more
accurate.

Now that we have both S1 and T1 energies calculated for 250k molecules with
xTB-ML, we can identify potential sensitizers and emitters. We can use the following
figures of merit (FOMs) to evaluate whether a molecule is a suitable candidate based
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FIGURE 4.26: Plot of 250k molecules showing difference in calibrated (a) S1 and (b)
T1 with ML model compared to linear model. Red dots are without calibration, green

dots are with linear calibration, and blue dots are with ML calibration.

on its excited state energies.

FOMsens =

0 T1 > S1

e−|1−
T1
S1 | + e−|1.1−S1| S1 ≥ T1

FOMemit =

0 S1 > 2T1

e−|2−
S1
T1 | + e−|2−S1| S1 ≤ 2T1

The first check is if the energies are invalid, i.e. if the T1 of the sensitizer is greater
than the S1, or if the S1 of the emitter is more than twice the T1. If these are true,
then the molecule is discarded and no calculation is necessary. If the molecule is
indeed valid, then there are two terms that compose the FOM. The first term ensures
the ratios are as close as possible to ideal – i.e. there is minimal loss in energy. The
second term in each FOM ensures the singlet energy of the sensitizer and emitter
match the target properties. This term is flexible depending on the application – for
this work 1.1 eV was chosen as the excitation energy of the sensitizer, which would
function as a near-IR absorber, and 2 eV was chosen as the emission energy, creating
a visible emitter. Note that the exponential terms constrain each component of the
FOM between 0 and 1, so the maximum FOM is 2. Figure 4.27 shows the results of
screening molecules for potential sensitizers and emitters.

We have therefore used xTB-ML to make quick, relatively accurate calculations
for S1 and T1 energies, and have used the results to screen for potential sensitiz-
ers and emitters. While this is useful for screening existing databases for suitable
molecules, generating new molecules for TTA would also be useful, as detailed in
the following section.
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FIGURE 4.27: Plot of 250k molecules showing S1 and T1 energies, colored with FOM
for (a) sensitizers and (b) emitters. Target properties include correct ratio of T1/S1
and S1 near certain values. 0 molecules have sensitizer FOM > 1.9, but 60 molecules
have emitter FOM > 1.9. SMILES, S1, T1, and FOM for molecules are available on

GitHub.142

4.3.7 Mapping inaccuracies in chemical space

Since our ML model predicts the error in xTB-sTDA, an interesting application is to
map the error in S1 and T1 calculations in a global chemical space, to see if there
are some areas where xTB systematically over- or under-estimates, or areas where
xTB is projected to be fairly accurate. The first requirement is to generate a global
chemical map. We used UMAP141 to embed the high-dimensional molecular data
into 2 dimensions, using the Jaccard-Tanimoto similarity between Morgan finger-
prints of molecules for proximity. We then colored the global chemical space map in
3 different ways, as shown in Figure 4.28.

First, we used HDBSCAN155 to cluster the molecules based on proximity, as
shown in Figure 4.28(c). HDBSCAN is a soft clustering, not creating distinct cate-
gories but instead giving molecules a rating between 0 and 10 (or -1 for no cluster,
as approximately 1/3 of the molecules were unable to be clustered). We can see
that HDBSCAN effectively clusters molecules in space, with most molecules in close
proximity included in the same cluster. Some of the clusters themselves are spread
out across space, such as the purple cluster that includes many molecules along the
edge of the global space. Note that this is a dataset-agnostic clustering, as the clus-
tering algorithm only sees molecular information and no labelled data. More details
about the HDBSCAN algorithm can be found in the paper by Campello et al.155 and
website.156

For the next two plots (Figure 4.28(a) and (b)), we used our ML model to predict
the error in xTB-sTDA. Here, the error is defined as:

error = true energy− xTB-sTDA energy (4.1)
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(a) (b)

(c) (d)

FIGURE 4.28: Global chemical space maps. Plots of xTB (a) S1 and (b) T1 errors
in global chemical space. (c) Clustering of molecules in global chemical space. (d)

Number of molecules per cluster in global chemical space.
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so a negative error implies xTB-sTDA is over-predicting the excited state energy. As
seen in Figure 4.28(a), there are distinct regions where xTB-sTDA over-predicts S1
(right side), regions where xTB-sTDA has reasonable accuracy (top left and center),
and regions where it under-predicts (left and top). In general, most molecules are
within ±0.5eV error.

In contrast, for the T1 energy, xTB-sTDA over-predicts for almost all molecules,
as seen in Figure 4.28(b). Note that the scale in this plot is shifted from -0.5–0.5 eV
(as in S1) to 0– -1.0 eV, to make the distribution of errors clearer. Only a few scat-
tered molecules are under-predicted by xTB-sTDA and are colored red, and all other
molecules are over-predicted. Similar to S1, xTB-sTDA over-predicts T1 for most
molecules on the right side, and gets reasonable accuracy on molecules in the mid-
dle and top left. In contrast to S1, T1 is also over-predicted on a cluster of molecules
on the bottom left.

The next natural question is whether each cluster as defined by HDBSCAN has
a particular error associated with it. For example, it seems that xTB-sTDA does a
relatively good job for the red cluster, but over-predicts energies for molecules in
blue and green clusters. Although HDBSCAN is a soft clustering, we can categorize
molecules into 100 distinct clusters based on the number assigned to them, as well
as 2 additional clusters (1 each for unclustered molecules and for outliers). Figure
4.29 quantifies the mean errors for S1 and T1 energies for each cluster.

Subplots (a) and (b) show the mean errors (ME) of S1 and T1, and we can see
our qualitative observation of orange/red clusters having low error and blue/green
clusters having high error is empirically upheld. We also note that a few dark blue
clusters seem to have low errors, for both S1 and T1. However, visually inspect-
ing the molecules in the dark blue clusters, it seems some have high negative and
positive error. To more accurately depict each clusters error, it is useful to take the
absolute value of the error before averaging them (MAE). This is shown in plots (c)
and (d) in Figure 4.29. With these plots, we again see that the blue/green clustered
molecules have high error, while red/orange/yellow clusters have low error. There
is still one dark blue cluster with low error, but this could be due to chance, as the
cluster picked molecules with low error, since most other dark blue clusters have
high error.

For broader applications, knowing the error expected for each cluster is useful if
the location and cluster categorization of a specific molecule in global chemical space
is known. Oftentimes, this is not known, or would require significant computation.
It would be ideal to know the properties of molecules with low predicted error, to
have greater confidence in xTB-sTDA calculations, or those with high error, to know
to use the ML model or consider other computational techniques. The following
subsection discusses this further.
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FIGURE 4.29: Mean errors for S1 and T1 energies of molecules in global chemical
space. (a) Mean S1 error, (b) mean T1 error, (c) mean absolute S11 error, and (d) mean
absolute T1 error. Note that clusters 0-9 are relevant, cluster -1 includes unclustered
molecules while cluster 10 includes outliers. "Absolute" error takes the absolute value

of errors before averaging them.
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Characteristics of molecules with low/high error

When running xTB-sTDA, it would be useful to have some idea as to whether it
will return accurate results. While clustering as discussed previously is an option,
it would be more beneficial to have some chemical intuition of accuracy based on
the molecular structure. To this end, this subsection identifies substructures that are
more likely to be present in low-error or high-error molecules.

We first use our ML model generated above to predict the S1 and T1 error be-
tween xTB and TDDFT for randomly subsampled 1M molecules from PCQC. We
then categorize the molecules based on the predicted error as follows:

CatS1 =


Low |S1err| < 0.05

HighUnder S1err > 0.5

HighOver S1err < −0.5

CatT1 =


Low |T1err| < 0.05

HighUnder T1err > 0

HighOver T1err < −1.0

(4.2)

where "under" refers to xTB underestimating the energy while "over" refers to
overestimating (note the error definition in Equation 4.1). For both T1 and S1 error,
we define low error as <±0.05 eV. However, for defining high error, for T1 we shift
the bounds down by 0.5 to reflect the distribution of errors, as seen in Figure 4.28(c).
The percentage of molecules in each category is shown in Table 4.3.

TABLE 4.3: Percentage of molecules in each error category, with categories defined in
Equation 4.2

Low High, Under High, Over Average

S1 15 1.5 11 72.5

T1 2.4 4.3 17 76.3

where "average" denotes molecules with uncategorized error. As seen, for both
energies, the majority of molecules are uncategorized. However, we can conduct
substructure analysis on the low and high overestimation categories (ignoring high
underestimation due to low fraction of molecules) to know when to trust the xTB-
sTDA results, or when to expect exceptionally high errors.

We use molZ157 to analyze which substructures are over-represented in each cate-
gory. The results of this substructure analysis are shown in Figures 4.30 for low-error
molecules and 4.31 for high-error molecules.

From these plots, a few patterns become evident. Low error molecules are more
likely to be aromatic, potentially with sequential attached rings, for both S1 and T1.
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FIGURE 4.30: Grid of molecular substructures over-represented in molecules with
low error as predicted by the ML model, for (a) S1 error and (b) T1 error. According
to RDKit, blue atoms are the center atoms, yellow atoms are aromatic atoms, dark
gray atoms are aliphatic ring atoms, and light gray atoms/bonds are connectivity

invariants.

FIGURE 4.31: Grid of molecular substructures over-represented in molecules with
high error as predicted by the ML model, for (a) S1 overestimation error, (b) T1 over-
estimation error, (c) S1 underestimation error, and (d) T1 underestimation error. Ac-
cording to RDKit, blue atoms are the center atoms, yellow atoms are aromatic atoms,
dark gray atoms are aliphatic ring atoms, and light gray atoms/bonds are connectiv-

ity invariants.
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In contrast, S1 high overestimation, S1 high underestimation, and T1 high underesti-
mation molecules are likely to be not aromatic, with some unconventional molecular
structures included in these groups. There are some aromatic substructures in the T1
overestimation molecules, but they are attached to the bulk structure with a rotat-
able bond. This overestimation could be a result of the 3D structure generation, since
only limited conformer analysis is conducted and potentially the lowest energy con-
former was not achieved. To clarify the effect of this versus an inherent inaccuracy in
the excited state energy calculation of xTB-sTDA, a more intensive conformer search
could be an avenue of future work.

Overall, these predictions can be used as guides to develop chemical intuition
for the accuracy of the xTB-sTDA methodology in calculating excited state energies.

4.4 Conclusions and Future Work

In this chapter, we have presented a methodology for calibrating a high-throughput
computational chemistry technique (xTB-sTDA) against a high-accuracy one (TD-
DFT) using ML. We first decided on Chemprop’s MPNN as the model of choice,
then generated a training set using literature scraping of relevant molecules from
abstracts (SCOP-PCQC) and an existing excited state database (QM-symex-10k). We
also generated a blind test set from a previously published study conducting linear
calibration of xTB-sTDA results (MOPSSAM). We then compared ML models gen-
erated from the small training set to various other expanded datasets, but found the
small 20k-molecule training set performed similarly to if not better than the largest
training sets considered (300k). In all cases, the ML calibration model (xTB-ML) out-
performed linear calibration, oftentimes significantly. All xTB-ML calibrated models
had MAEs of less than 0.2 eV when compared to TD-DFT, and in some cases the error
was much less (~0.13 eV).

The xTB-ML model was the main result of this work. For the 3 blind test sets
used in this study, the average MAE was 0.341 eV for only xTB-sTDA, 0.225 eV for
linearly calibrated xTB-sTDA, and 0.150 eV for xTB-ML. If xTB-ML is used as the
first step in a high-throughput screening process instead of raw xTB outputs, its
low error can help ensure that all relevant molecules are selected and not weeded
out, while simultaneously ensuring all selected molecules are relevant. Having a
high-throughput technique with high accuracy can therefore be extremely useful for
materials discovery.

After evaluating the performance of xTB-ML, we then used the model for three
applications. First was comparing the xTB-ML model against directly predicted en-
ergies with ML, showing the xTB-ML model had better accuracy (0.17 eV vs. 0.25
eV MAE). Second was rapidly screening 250k molecules for suitability as NIR-TTA
sensitizers and emitters. The databases had no suitable sensitizers, but 60 suitable
emitters were found. Lastly was mapping inaccuracies of xTB in chemical space,
using the ML model to predict errors in xTB. This was used to see which regions of
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chemical space xTB has high errors in. S1 errors were small, with most molecules
being within 0.5 eV. There were clear regions where xTB overpredicted S1, but only
a few for underprediction. T1 energies were generally overpredicted, with most
molecules being between 0 and 1 eV below TD-DFT values. Global chemical space
mapping provides another method of predicting xTB error, by calculating which
cluster a molecule belongs to and referencing the MAE of that cluster. Properties of
low-error molecules were also evaluated, finding non-aromatic molecules are likely
to have higher error.

While xTB-ML was able to improve performance of xTB-sTDA against TD-DFT
values calculated with B3LYP, the model was unfortunately not generalizable to
other functionals (PBE0, CAM-B3LYP) or other computational chemistry techniques
(ZINDO, CC2). However, applying the same methodology used in this study to
calibrate xTB-sTDA against coupled cluster values (CC2), and generating a new
xTB-CC-ML model, showed calibrated xTB-sTDA values had high accuracy (0.15
eV MAE), out-performing TDDFT values calculated with PBE0 (0.26 eV MAE) and
CAM-B3LYP (0.19 eV MAE). Therefore, the methodology presented here is general-
izable to other calibrations.

There are a few avenues of future work to mention here. First is improving the
ML model architecture. While Chemprop’s MPNN outperformed other ML mod-
els, primarily due to its advanced featurization, it still only took the 2D molecular
structure as input. Since the 3D structure is already output by xTB, including this
information as input to the ML model would likely improve performance. Another
improvement to the ML workflow would be to conduct a more intensive conformer
search. While OpenBabel’s gen3D function includes a search for 200 conformers,
these may not include the lowest energy conformer, thus reducing the accuracy of
the xTB portion of the workflow. It would be unfair to characterize this error as er-
ror due to xTB, since this is due to initial structure generation. Using a conformer
searching tool such as CREST158 would be more comprehensive, although the com-
putation time added may detract from the high-throughput nature of the xTB-ML
process.

As discussed previously, the calibration methodology can be expanded beyond
TD-DFT. This work additionally applied it to CC2 calculations, but it can be further
applied to experimental values. However, this would be time-consuming due to
the requirement of real-world measurements. There have been a few previous stud-
ies in calibrating TD-DFT against experimental values,134,135 as outlined in Section
2.2.2, but these used only small experimental datasets. There is a potential here to
apply techniques such as text mining to extract experimental excited state data from
published papers, though the differences in reporting may make this difficult.

Another potential future work is using xTB-ML in other applications. For exam-
ple, Chapter 3 expanded candidate space using the graph-based genetic algorithm
(GB-GA) developed by Jensen.144 Instead of using direct ML for energy predictions,
it is possible to use xTB-ML. While this would give more accurate results, it would be
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significantly slower as xTB-sTDA takes on the order of tens of seconds rather than
seconds for ML. However, if calculations are sufficiently parallelized, this process
could result in thousands of high-quality candidates being generated in days.

Although xTB-ML is significantly faster than TD-DFT based methods, with com-
parable accuracy, it is still too slow to screen millions of molecules. As stated pre-
viously, xTB-ML can calculate excited states of approximately 1500 molecules per
hour (parallelized over 4 nodes), for molecules with <50 heavy atoms such as those
in PCQC. Therefore it would take over 3 months to calculate all 3.5M molecules in
PCQC (from scratch, starting with only the SMILES string). While a definite im-
provement over TD-DFT (41 months, using the ground state structure provided
in PCQC), this is still slow. Expanding to larger databases with bigger molecules
would increase runtime even further. Therefore, an optimized workflow must be
developed. The next chapter discusses using active learning to intelligently sample
chemical space, intentionally searching for molecules with certain desired proper-
ties.
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Chapter 5

AL with xTB-ML for
high-throughput virtual screening
of chromophores

5.1 Motivation

In this chapter, we aim to efficiently and accurately identify candidate chromophores
from large-scale databases with high-throughput virtual screening (HTVS). As seen
in Section 2.1.1, there are limited large databases with excited state energies already
calculated, so these energies must be calculated independently. However, high-
accuracy methods are too slow for high-throughput screening, so a faster method
such as machine learning or xTB-sTDA must be used instead. Direct ML models
may have low accuracy, especially trained on small training sets. xTB-sTDA has also
been shown to have low accuracy, but the calibration ML model xTB-ML introduced
in Chapter 4 has high accuracy, even when trained on smaller datasets. As men-
tioned, however, HTVS on large databases (>1M molecules) is time-consuming even
with xTB-ML. Instead, we must use active learning (AL) to efficiently sample the
chemical space and suggest suitable molecules.

AL was already introduced in Chapter 3, and a similar workflow is presented
here, with some key differences. First, xTB-ML is used for labeling molecules in-
stead of TD-DFT. Second, the acquisition function is changed to include not only
uncertainty but also suitability. This ensures desired molecules are directly sug-
gested instead of having to run the generated ML model over the entire database at
the end. Third, to simplify the workflow, the number of molecules suggested is fixed
at 20k, instead of varying the additions based on a fixed uncertainty threshold. The
following sections will provide more details about the methods, including dataset
descriptions and an overview of the workflow, as well as some results.

Note here that this part of the thesis was done in collaboration with Jiali Li at the
National University of Singapore. We developed the specifics of the AL workflow
together, but split the computational load to increase efficiency. Jiali ran the ML
portion of the workflow as he had access to higher-quality GPUs, while I ran the
xTB-ML portion of the workflow since this was more CPU-intensive.
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5.2 Methodology

5.2.1 Dataset descriptions

The large-scale molecular database used in this study is PubChemQC (PCQC).65

While the entire PubChem database could have been used, PCQC is a convenient
subsample of PubChem. Details of PCQC are presented in 2.1.1 and 4.2.2. Plots of
some properties of PCQC are reproduced in Figure 5.1 for convenience.

FIGURE 5.1: Plots of properties of molecules in the PCQC dataset. (a) Scatter plot of
molecular weight vs. complexity, colored by S1 energy. (b) Density plot of molecular
weight vs. complexity. (c) Density plot of rotatable bond count vs. heavy atom (Z≥2)

count. (d) Histogram of S1 energies of all molecules.

As with all AL workflows, an initial training set is required. For this, the SCOP-
PCQC dataset presented in Section 4.2.2 was used (more details about the dataset
can be found in that chapter). To flesh out the dataset, 5k molecules were randomly
selected from PCQC, so the size of the initial training set was 15k molecules.

A fixed test set was chosen to standardize performance evaluation of the AL
model at each cycle. 30k molecules were randomly sampled from PCQC, and xTB-
ML was used to label each molecule with its S1/T1 excited state data. At each cycle,
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the AL model was used to predict excited state properties of the fixed test set, and
the accuracy was measured through mean absolute error (MAE).

5.2.2 AL workflow

The purpose of the AL workflow is twofold: to improve the accuracy of the ML
model by intelligently expanding the training set, and to suggest suitable chro-
mophores (sensitizers or emitters) by efficiently screening the large database.

Training set expansion is conducted by measuring the uncertainty of the ML
model for each molecule in the database. The ML model itself is a 50-ensemble
model, with each sub-model having the same architecture (details provided in Ap-
pendix Section A.3) but being initialized with different random weights. The uncer-
tainty of each molecule is given by the variance in predictions of the sub-models.

Suitable molecule suggestion is done by averaging the ensemble’s predictions of
the excited state energy levels and using the energies to calculate a suitability FOM:

εsens = e−A
(

1− ET1
ES1

)
(5.1)

εemit = e−A
(

2− ES1
ET1

)
(5.2)

σT1 =
∑50

i=1 (T1i − T1mean)
2

50
(5.3)

σS1 =
∑50

i=1 (S1i − S1mean)
2

50
(5.4)

where “sens” refers to sensitizers and “emit” refers to emitters: for sensitizers,
T1 should be close to S1, while for emitters, S1 should be around twice T1. The
exponential term was used to normalize the suitability from 0 to 1, for mathematical
convenience. A is a tunable parameter to adjust the sensitivity of the energy ratio
constraint. Note that no strict bounds are defined here, so in Equation 5.1 T1 could
be greater than S1, although these molecules are rare and this would likely instead
indicate an error in computation. Similarly, in Equation 5.2, if S1 < 2T1, the molecule
would be a TTA emitter candidate, while if S1 > 2T1, it would be a singlet fission
candidate. Having such flexible suitability functions therefore allows simultaneous
suggestion of various types of molecules.

Note further that additional considerations such as strong oscillator strength and
spin-orbit coupling are also important characteristics of good sensitizers and emit-
ters, but this study is focused on optimizing energy level alignment instead of reduc-
ing efficiency losses. The HTVS approach presented in this work should generate a
pool of candidate molecules on which further simulations can then be conducted.

For each AL cycle, the workflow acquires molecules based on an acquisition
function defined as the sum of suitability and uncertainty:
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αsens = B · εsens + σT1 + σS1

αemit = B · εemit + σT1 + σS1
(5.5)

Where αi is the acquisition score, σi is the uncertainty for either T1 or S1, and B
is another tunable parameter, this time to weight the suitability function against the
uncertainty and make it more (or less) important, depending on the objective. This
definition of the acquisition function ensures the ML model suggests molecules of
interest, but also improves in accuracy for all molecules.

The overall AL workflow is presented in Figure 5.2. The initial training data
is composed of the 15k molecules discussed in Section 5.2.1. The training dataset
is split into 95% actual training and 5% validation for each training epoch. A 50-
ensemble ML model is trained on the training data, and used to predict properties
of all non-training data, including the fixed test set. Acqusition scores are calculated
for the non-training data, as the sum of uncertainty (model variance) and suitability
(as discussed above). The 10k molecules with the highest sensitizer acquisition score
are chosen, and then the 10k unique molecules with the highest emitter acquisition
score are chosen. Note that we specify "unique" emitters because sometimes the
uncertainty may dominate the acquisition score, causing overlap between the top
10k sensitizers and emitters, so overlapping molecules are ignored and 10k unique
emitters are chosen. Further note that the training set is pruned to avoid overlap
with the fixed test set.

Next, on the test set, the MAE is calculated, and on the 20k suggested molecules,
the mean suitability scores are calculated. If the MAE is high or the suitability
scores are low, the AL cycles continue – the excited state energies of the 20k cho-
sen molecules are labeled with xTB and added to the training set. However, if both
the MAE is low and the suitability scores are high, then the model has converged
and the AL cycles are completed.

Note here that the xTB-ML calibration model is fixed and not updated with
each AL cycle. This is because this would require TDDFT labeling of data, which
would detract from the high-throughput nature of this workflow. Also, updating
the "ground truth" labeling technique may cause issues with stability. As presented
in Chapter 4, the xTB-ML model should be accurate already.

The final results of the AL workflow are all of the suggested molecules compiled
from each AL cycle, as well as an optimized ML model that can be used to rapidly
screen all remaining molecules in the database to identify further candidates.
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FIGURE 5.2: Overall AL workflow. 50-emsemble ML model is trained on training
data, then used to predict properties of all non-training data and the fixed training set.
Acquisition scores are calculated for the non-training data, and the top 20k sensitizers
and emitters are chosen. The suitability scores of the sensitizers and emitters and
the MAE of the test set is calculated. If both properties have not converged, the AL
parameters are tuned, the 20k molecules are labeled, and the cycle starts again. If
the properties are converged, the optimized ML model is returned. Note that due to
memory issues, predictions were made on the 3.5M non-training data in ~35 batches

of 100k.
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5.3 Results

5.3.1 AL performance

There are two metrics to evaluate the performance of the AL-ML model. First is
MAE of the fixed 30k test set, and second is the mean FOM of the suggested 10k
sensitizer and 10k emitter molecules. Figure 5.3 shows plots of these two metrics as
a function of AL cycle. As seen, the MAE of the fixed test set decreases as the AL
cycles progress, but seems to stagnate above 0.2 eV. The mean FOM of suggested
sensitizers rapidly increases, but the mean FOM of emitters stagnates around 0.6.

FIGURE 5.3: Plots of improvement of ML model for each AL cycle. (a) Plot of MAE
of fixed test set vs. AL cycle, and (b) plot of mean FOM of suggested sensitizer and
emitter molecules vs. AL cycle. Note here the numbering system used for AL cycles.
Cycle 0 is the initial training set. Each cycle starting with 1 uses AL to add molecules
to the training set. Then the total training set so far is used to evaluate the MAE for
that cycle. Therefore, cycle 0 has no FOM as molecule suggestions only start with

cycle 1.

In the final AL cycle, out of the 10k sensitizers suggested, 9935 had FOM greater
than 0.95 (based on Equation 5.1), but out of the 10k emitters suggested, only 767
had FOM greater than 0.95 (based on Equation 5.2). Applying the strict bounds
of T1 < S1 required for TTA sensitizers reduces the number to 9916 sensitizers. The
number of sensitizers only decreases slightly because normally molecules should not
have a higher T1 than S1; if so, that would likely indicate an error in computation.
Separating the emitters into TTA emitters (S1 < 2T1) and SF emitters (S1 > 2T1) gives
389 TTA and 378 SF emitters. As expected, because there are no physical constraints
on S1 with respect to 2T1, the split between TTA vs. SF emitters is roughly half.

To explore why the mean FOM of the emitters stays so much lower than that of
sensitizers, we plot some additional metrics in Figure 5.4. Figure 5.4(a) shows the
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number of suggested molecules with high predicted FOM (>0.9), i.e. FOM calcu-
lated with predicted S1 and T1 using ML. As seen, the number of suitable sensitizers
rises quickly to 10k, while the number of suitable emitters initially rises, but then
falls rapidly. A similar trend is seen in Figure 5.4(b), where the number of high-
uncertainty molecules (>0.5, defined as the sum of uncertainty terms in the acqui-
sition function over the overall acquisition score) is plotted against AL cycles. The
number of high-uncertainty sensitizers drops rapidly to essentially 0, while the emit-
ters initially see a rapid drop, but then a more gradual increase. These trends seem
to suggest that the AL model has exhausted its search for emitters after 4 AL cycles.
Instead, after 4 cycles, the model seems to be expanding its reach by including more
high-uncertainty molecules.

The suggested molecules were then run with xTB-ML to confirm results, and the
number of molecules with high confirmed FOM (>0.9) are shown in Figure 5.4(c).
A similar trend to Figure 5.4(a) is seen, but at a more modest scale. Almost all sen-
sitizers again exhibit high FOM, while the emitters increase until cycle 5 and then
decline. In contrast to Figure 5.4(a), however, the increase and decrease are much
more gradual, and the overall number of confirmed emitters hovers around 1500
per cycle.

To investigate why the number of confirmed emitters does not increase, we plot
accuracy calculated two ways in Figure 5.4(d). First, the simplest calculation is the
number of confirmed high-FOM molecules over suggested high-FOM molecules,
shown as “sens-1” and “emit-1.” Sensitizer accuracy approaches unity, and at first
glance it appears emitter accuracy similarly explodes after cycle 4. However, this
is not a true measure of accuracy. Instead, “sens-2” and “emit-2” show the fraction
of suggested high-FOM molecules that were confirmed to have high FOM. This is
distinct from the former definition as the number of confirmed high-FOM molecules
may include molecules that were not suggested to have high FOM but ended up ex-
hibiting these properties anyway. In reality, the accuracy of the suggested molecules
remains low, at around 17%.

This is a peculiar result, as it is unclear why molecules suggested to have low
FOM would instead be confirmed to high a FOM. To explore this further, we can
plot MAE per energy interval, as shown in Figure 5.5. As seen, initially the errors
are large, with many MAEs higher than the energy interval itself. However, as the
cycles progress, the MAEs decrease significantly. Generally, the shape of the MAE
vs. energy plot matches the shape of the histogram of energies, such that energy
intervals with more molecules have lower MAE. The high MAEs for certain energy
intervals could help explain why so many molecules are unexpectedly showing high
FOM, as they would initially not be identified as suitable with the AL-ML surrogate
model.

It is now useful to get a more visual representation of the molecular space to
qualitatively explore some of the phenomena discussed above.
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FIGURE 5.4: Additional metrics for AL cycles. (a) Number of molecules with high
FOM (>0.9) as determined by surrogate ML predictions. (b) Number of molecules
with high uncertainty fraction (>0.5), defined as sum of both uncertainty values over
the acquisition score. (c) Number of suggested molecules confirmed to be suitable
with xTB-ML. (d) Suggestion accuracy, (1) all confirmed molecules over predicted
high-FOM molecules, and (2) fraction of predicted high-FOM confirmed with xTB-

ML
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(a)

(b)

FIGURE 5.5: (a) Histograms of MAE per energy interval of xTB-ML, for S1/T1 ener-
gies in sensitizers and emitters. (b) histograms of S1 and T1 energies of emitters and
sensitizers. Note that these MAEs are different from the MAEs calculated in Figure
5.3, as this figure uses the 20k suggested molecules as the “test set” while the former

uses a fixed 30k test set.
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5.3.2 Chemical space mapping

Figure 5.6(a) shows where the molecules added at each AL cycle are located in global
chemical space. As seen, while the molecules are initially distributed widely, by cy-
cle 4 they start to cluster in certain regions. By the last cycle, there are definitive clus-
ters in a few regions of chemical space, but there is simultaneously broad coverage
of chemical space. Further, Figure 5.6(b) shows the distribution of sensitizers (red)
and emitters (blue) separately. As seen, there are clear boundaries between the two
types of molecules, for example the top left being almost all emitters, while the right
side is majority sensitizers. It further looks as though sensitizers are clustered, im-
plying a region has been found with high sensitizer potential, while emitters are still
spread out, so an ideal region has not been found yet. To explore this more deeply,
Figure 5.6(c) shows the uncertainty/acquisition score fraction, i.e. if the molecule
was included due to high uncertainty or high suitability. As seen, most sensitizers
have nearly zero uncertainty, indicating they were chosen due to their properties.
In contrast, the emitters generally have higher uncertainty, indicating emitters with
ideal properties have not been found yet. This is not always the case, however – for
example, the tip on the top left includes emitters with low uncertainty ratio, indicat-
ing that may be a promising region.
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(a) (b)

(c)

(d) (e)

FIGURE 5.6: Global chemical space embedding of various datasets. (a) Locations of
molecules added at each AL cycle, compared to global chemical space. (b) Locations
of sensitizers (red) and emitters (blue) separately plotted for the last AL cycle. (c)
All last-cycle AL molecules colored by uncertainty/acquisition score ratio. Lower
ratio means uncertainty contributed less to the score than suitability, higher is vice
versa. Global embedding generated by 350k randomly sampled PCQC molecules,
using UMAP based on the 2D Jaccard similarity between Morgan fingerprints. Em-

bedding of AL molecules predicted based on global embedding.
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5.3.3 Identifying chromophores

In all AL cycles, there were a total of 88056 unique sensitizers and 79860 unique
emitters that were suggested, and of those, 79149 TTA sensitizers, 5781 TTA emit-
ters, and 4222 SF emitters were confirmed to be suitable by xTB-ML, using the strict
bounds defined in Equation 3.5. Recall that in Chapter 3, 307216 sensitizers, 2763
TTA emitters, and 1694 SF emitters were identified. While not all of them were con-
firmed with TD-DFT, these numbers can serve as order-of-magnitude approxima-
tions to the number of potential candidates. This suggests that AL is likely close to
saturation for emitters, but further AL cycles should continue to idenfity sensitizers.

To get a sense of the types of molecules being identified as sensitizers or emitters,
it is useful to visualize the scaffolds of these molecules. RDKit’s MurckoScaffold
module was used for this purpose. Figure 5.7 shows the 32 most common scaffolds
in identified suitable (a) sensitizers and (b) emitters (without differentiating between
TTA or SF emitters), where each scaffold must have at least 10 heavy atoms.

As seen, there are a few stark differences between suggested sensitizers and emit-
ters. First, there are no aromatic rings in the sensitizers, while the emitters have
several. The emitters have majority 6-carbon rings, while many of the sensitizers
have 3- or 5- carbon rings. Many of the emitters have oxygen atoms, while few of
the sensitizers do. There are also some similarities, such as many scaffolds of both
sensitizers and emitters are composed of rings connected with a bond or a chain.

To better understand the relationships between identified molecules, it is possi-
ble to generate a graph representation of the dataset. The graph features molecules
represented by nodes, connected with edges if their similarity score is greater than
0.5. After computing these properties, the graph representation can be visualized
with Argo Lite,159 as shown in Figure 5.8 below.

This graph representation is useful to evaluate the quality of molecules within
the database. Molecules with high degree or high page rank would be more likely
to be suitable emitters. Degree is a measure of connectivity and counts the number
of connections to other nodes. Page rank is a measure of importance, including
the number of connections but also the importance of those connections. While the
graph presented here only includes molecules labeled with xTB-ML, it can also be
used as a measure of confidence for ML-predicted molecules – if a molecule has a
high page rank when added to the graph, it is likely to be suitable.

The 8 molecules with the highest degree and page rank are shown in Figure
5.9. The SMILES, S1, T1, S1/T1 ratio, and degree/pagerank for these molecules is
available on GitHub.142

The AL workflow will give all potential TTA molecules based on ratios of S1/T1.
To identify specific molecules for our energy region of interest, we need to screen the
molecules for their energy levels and match sensitizers to emitters to identify pairs
for TTA. For NIR-TTA, we want sensitizer S1 to be around 1.1 eV (1.0 to 1.2 eV) and
emitter S1 to be around 2.2 eV (2.0 to 2.4 eV).
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(a)

(b)

FIGURE 5.7: Most common scaffolds for suitable (a) sensitizers and (b) emitters iden-
tified by AL-xTB-ML. Each scaffold must have at least 10 heavy atoms (Z>1). Num-
bers below each scaffold shows number of times it appears in the dataset of suitable

molecules.

Applying these constraints to the identified sensitizers and emitters gave 15 po-
tential sensitizers and 322 potential emitters. The reason there are so fewer sensi-
tizers than emitters is due to the distribution of energies, as seen in the histogram
in Figure 5.5(b). The sensitizer S1 distribution is skewed such that most S1 energies
are above 4 eV. In contrast, the emitter S1 distribution is more normal, with a peak
around 3-4 eV but still a substantial number of molecules around 2 eV. Molecular
information (including SMILES, S1, T1, and FOM) for all identified chromophores,
as well as NIR identified chromophores, is available on GitHub.142
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FIGURE 5.8: Argo Lite graph representation of identified emitters. Each node repre-
sents a molecule in the dataset, while an edge is made if the two connected molecules
have similarity scores greater than 0.5. Size and color of each node correspond to the

degree of connection. Graph representation generated by Jiali Li.

(a)

(b)

FIGURE 5.9: Highest ranked molecules by (a) degree and (b) page rank in graph rep-
resentation of emitter dataset. Legend indicates score of each molecule.
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5.3.4 Improvements to AL workflow

There is clearly room for improvement to the AL workflow above, especially for
emitter identification. We propose a few changes to the acquisition function of emit-
ters to help improve efficiency and accuracy of selection. Instead of having only two
terms, one for suitability and one for uncertainty, it may be beneficial to include a
similarity term. This term would include comparison of a test molecule to all pre-
viously identified emitters, as such molecules are likely to have similarly suitable
properties. This would focus the search in certain areas of chemical space where
emitters are likely to reside. The existing acquisition function seems to work until
cycle 5, at which point the acquisition function would be amended to include the
similarity term, i.e.

αsens = 2 · εsens + σT1 + σS1 + 4 · Sim

αemit = 2 · εemit + σT1 + σS1 + 4 · Sim
(5.6)

where ε, σT1, and σS1 are normalized between 0 and 1, and Sim is the similarity
score.

We have yet to comment on the form of the similarity score. Fundamentally, we
would use cosine similarity between Morgan fingerprints of molecules. However,
the algorithm of calculating similarity of test molecules to identified molecules must
be carefully designed. Taking the maximum of all similarity scores may result in
spurious matches if the test molecule is similar to only 1 or 2 existing molecules. On
the other hand, taking the average of all similarity scores would flatten the data sig-
nificantly. Instead, a cluster similarity method is proposed. First, the pre-identified
molecules are clustered in chemical space. Then, for each cluster, the similarity score
of the test molecule to all molecules in the cluster is calculated, and the average of
the top 100 similarity scores is used. The maximum average similarity score across
the clusters is then used as the final similarity term in the acquisition function. This
ensures no spurious molecules are included, and only molecules definitively match-
ing existing clusters are added.

Another possible addition to the acquisition function would be to even out the
distribution of molecules at different energy intervals. Currently, as seen in Figure
5.5, the MAE is not uniform across all energy levels, but seems to improve when
more molecules are located in that energy interval. To force the model to learn more
about energies with high error, a term could be added in the acquisition function
to make molecules with these energies more likely to be chosen. This would help
improve the overall MAE of the model, and prevent it from stagnating as it seems to
be from Figure 5.3.

These new acquisition functions are being tested at the time of writing, so results
are unfortunately not available yet. The new acquisition functions will be compared
to the original acquisition function, as well as a control acquisition function with no
suitability term.
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5.4 Conclusions and Future Work

This chapter applies xTB-ML to screen large-scale databases, using active learning
to intelligently sample molecules of interest. The two main differences between the
active learning workflow implemented here and that of Chapter 3 is the inclusion
of suitability in the acquisition function, and the use of xTB-ML as the labeling tech-
nique instead of TD-DFT. Adding suitability allows active suggestion of candidate
molecules in each AL cycle. The uncertainty term is still included in acquisition,
so the model’s accuracy should also improve. Using xTB-ML instead of TD-DFT
allows rapid iterations of AL. For example, each AL xTB-ML cycle takes approxi-
mately 2 days – 24 hours for the surrogate ML training and prediction and 15 hours
for xTB-ML labeling of the top 20k suggested sensitizers and emitters. In contrast,
each AL TDDFT cycle takes approximately 2 weeks, with the bulk of that consumed
by TDDFT labeling. A natural concern with replacing TDDFT with xTB-ML is accu-
racy. However, as shown in Chapter 4, xTB-ML should predict TDDFT values within
0.15 eV. While this may vary for specific molecules, this is a good point of reference.

The main result from this work is the rapid nature of the AL cycles. This allows
multiple workflows to be quickly tested and evaluated. In this chapter we have only
presented one AL workflow based on an acquisition function including suitability
and uncertainty; however, multiple additional workflows are proposed, and many
others can also be tested. If desired, the best workflow can then be used on an AL
methodology using TDDFT, for more accurate molecular suggestions.

This chapter focuses on developing the methodology for rapid AL, but evalu-
ating the efficacy of the AL workflow is limited to calculation with xTB-ML. More
intensive evaluation is delegated to future work. The easiest way to evaluate a work-
flow would be to compare the results to molecules output in Chapter 3. However,
the accuracy of the previous workflow was low, as it used direct ML predictions,
with only a small fraction of suggested molecules were confirmed with TDDFT. The
best way of evaluating the AL workflow would be to confirm high-scoring molecules
with TDDFT. Despite the computational expense of TDDFT, if only the top ~1000 or
so molecules are calculated, this could be a reasonable evaluation technique.

Another avenue of immediate future work is to expand the number of candi-
dates. This can be done by running the final optimized ML model on all 3.5M
molecules in PCQC. This should give several additional potential sensitizers and
emitters, which can be either confirmed with xTB-ML, or added to the graph repre-
sentation to evaluate confidence in the predictions. Another option for expansion is
using the graph-based genetic algorithm (GBGA) presented in Section 3.3.4. Since
an output of this AL workflow is an optimized ML model for prediction of S1 and T1
energies, this can directly replace the ML model implemented in the GBGA work-
flow in Chapter 3.

Finally, the AL workflow can be applied to high-throughput virtual screening of
other datasets. Since no TD-DFT is involved, and xTB-ML is fast, datasets can be
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rapidly screened and potential candidates suggested. The best AL workflow, as still
to be determined, can be generalized to other databases, as the acquisition function
is not unique to PCQC. For a time-scale reference, the 3.5M molecule PCQC database
was screened in 2 weeks. The time requirement would fortunately scale nicely, as
the xTB-ML model will always be labeling the top 20k molecules, so this would be
constant, and the ML model scales with the number of features and the number of
neurons per layer, which is faster than linearly. It would therefore be possible to
screen tens or hundreds of millions of molecules quickly using an optimized AL
workflow.

Overall, this chapter combines the two techniques presented in Chapters 3 and 4,
active learning and xTB-ML, to intelligently sample a large molecular database and
actively suggest candidates. While the workflow still requires optimization, this is
a useful starting point. The following chapter will summarize the entire thesis and
present some final thoughts of the work.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have used high-throughput virtual screening (HTVS) of large molec-
ular databases to identify potential chromophores for triplet-triplet annihilation (TTA)
and singlet fission (SF). As outlined in Chapter 1, TTA and SF materials can be
used to shape the solar spectrum to be more suitable for existing solar cells, in-
creasing their maximum theoretical efficiency from 33% to around 50%. Unfortu-
nately, photon conversion materials used in TTA and SF suffer from a variety of
losses, categorized under either efficiency losses, which reduce the probability of
an absorbed photon being re-emitted, or energy losses, reducing the output energy
of the re-emitted photon. We have focused on reducing energy losses by discov-
ering molecules with optimized energy level alignment. For example, for SF, the
singlet energy (S1) should be just above twice the triplet energy (T1). TTA requires
two molecules, sensitizers and emitters, where sensitizers have S1 just above T1 and
emitters have S1 just below twice T1. The HTVS process involves calculating the
S1 and T1 energies for molecules and selecting the molecules with the most optimal
energy level alignment.

There are various ways of calculating the S1 and T1 excited state energies. The
most accurate would be do use post-Hartree Fock ab initio methods, including cou-
pled cluster calculations. Unfortunately, these are incredibly time intensive. The
most common excited state method is time-dependent density functional theory
(TD-DFT), which has a reasonable tradeoff between computational cost and accu-
racy, especially with the development of recent functionals. However, for HTVS,
even TD-DFT is too slow. Recently, several high-throughput computational tech-
niques have been developed, including extended tight binding (xTB) methods which
can be combined with the simplified Tamm-Dancoff approximation (sTDA) for ultra-
fast computation of excited state energies, on the order of seconds to minutes.

The above techniques attempt to find solutions to Schrödinger’s equation, with
varying levels of approximations, and are therefore classified as computational chem-
istry techniques. However, it is also possible to apply a data-driven approach for
excited state energies. Machine learning (ML) models such as neural networks can
be trained on large datasets and used to rapidly predict excited state energies of
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thousands of molecules within seconds. Training set generation can be done either
randomly or with active learning (AL), which more purposefully forms the train-
ing set with high-uncertainty molecules. Chapter 2 provides more details about the
methodologies presented above.

The results chapters of this thesis, Chapters 3 - 5, used various combinations of
the above techniques to conduct HTVS to identify potential chromophores.

The first approach, as presented in Chapter 3, was to screen existing high-accuracy
databases (with TD-DFT level calculations) for potential chromophores. Unfortu-
nately, a large-scale triplet energy database does not exist. The large-scale quan-
tum chemistry database PubChemQC (PCQC) contains singlet energy TDDFT cal-
culations for 3.5M molecules, but calculating 3.5M triplet energies would be pro-
hibitively expensive. Instead, our approach was to use ML to predict energies based
on a smaller (<10% the size of PCQC) training set. Training set generation was done
sequentially with AL, by training a model, using it to predict uncertainty in the re-
maining molecules, selecting high-uncertainty molecules, running TD-DFT on those
molecules, adding them to the training set, and repeating this cycle. Because singlet
energies were already available in the database, we could rapidly conduct AL cy-
cles, and after 8 cycles we achieved an MAE of 0.16 eV, using a training set of 276k
molecules. For triplet energies, time constraints limited the AL cycles to 1, but an
MAE of 0.3 eV was still achieved, using a training set of 133k molecules. Using these
2 ML models, we were able to rapidly screen all 3.5M molecules in PCQC, identify-
ing 307,216 sensitizers, 2763 TTA emitters, and 1694 SF emitters. Of interest to solar
applications are NIR TTA materials, so restricting the energy levels to that region
gave ~3000 molecules, and running these with TD-DFT gave 7 confirmed sensitizers
and 7 confirmed emitters. To expand the candidate space, the graph-based genetic
algorithm (GBGA) was updated to use the 2 ML models generated in this study.
Running GB-GA output ~5000 total sensitizers and emitters of interest.

There are unfortunately a few limitations with using ML to directly predict ex-
cited state energies, including issues with accuracy, the large training set required,
and its inherent black-box nature. Therefore, the second approach, as presented in
Chapter 4, uses ML to calibrate a high-throughput computational technique (xTB-
sTDA) against TD-DFT, instead of directly predicting excited state energies. The
training set for calibration requires both xTB-sTDA and TD-DFT calculated values
for molecules. While xTB-sTDA values can be calculated locally, TD-DFT calcula-
tions are time-consuming, so these values were taken from databases instead. The
two databases considered were SCOP-PCQC, an independently generated subset of
PCQC consisting of 10k molecules relevant to TTA/SF, and QM-symex-10k, com-
posed of 10k randomly selected molecules from 173k radially symmetric molecules.
Expansions to these datasets were also considered, including the 105k/107k S1/T1
AL datasets from Chapter 3 and the full 173k QM-symex dataset. ML models were
trained on these various datasets, taking the molecular SMILES string and the er-
ror (TDDFT – xTB-sTDA) as input, and used to predict errors for various blind test
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sets. These blind test sets included 1,143 small aromatic molecules from Wilbra-
ham et al.112 and 1,000 indolonaphthyridine thiophene derivates from Fallon et al..52

The two ML models that performed the best were the initial 20k training set (SCOP-
PCQC + QM-symex-10k), with an average MAE of 0.150 eV, and the 300k training set
with all expansions, with an average MAE of 0.161 eV. Both of these vastly improve
the average MAE of 0.341 eV for raw xTB-sTDA values. The xTB-ML-20k model was
then used for various applications, including identifying 60 NIR-TTA chromophores
among the 250k small aromatic molecules in Wilbraham et al.112 and mapping the
accuracy of xTB-sTDA in chemical space. The same methodology used to calibrate
xTB-sTDA against TD-DFT was then used to calibrate xTB-sTDA against coupled
cluster (CC2) values in QM8, finding the ML-calibred xTB values outperformed TD-
DFT values, with an MAE of 0.15 eV compared with 0.26 eV for PBE0 and 0.19 eV for
CAM-B3LYP. These results are extremely promising, showing ML can help increase
the accuracy of xTB-sTDA and improve its predictive performance, despite it being
a high-throughput technique.

Finally, the third approach, as presented in Chapter 5, combines the above two
approaches. While calculating 3.5M molecules with xTB-sTDA would be 2-3 orders
of magnitude faster than TD-DFT, it would still be relatively slow (3 months, when
parallelized over 4 nodes). Therefore, we instead use AL to intelligently sample
the 3.5M molecular space for potentially suitable chromophores. The AL work-
flow is similar to that of Chapter 3, with some critical differences. Because we
want to actively suggest potential chromophores, instead of only selecting the high-
uncertainty molecules, the workflow also selects molecules with high suitability.
Then, the selected molecules are labeled with xTB-ML instead of TD-DFT. Its effi-
cacy as a direct replacement to TD-DFT is confirmed by the analysis in Chapter 4,
which demonstrates a low MAE for xTB-ML. By using xTB-ML, this workflow is
significantly faster, allowing 9 AL cycles to be completed in under 2 weeks. The
final ML model had an MAE of 0.23 eV using a 192k training set. Compiling all sug-
gestions from the 9 cycles gave 79149 TTA sensitizers, 5781 TTA emitters, and 4222
SF emitters confirmed with xTB-ML, of which ~350 were potential NIR-TTA chro-
mophores. Based on performance metrics and chemical space maps of selected data,
it seems that the emitter space has been fully explored and candidates output, while
more sensitizers could be suggested with further AL cycles. Although the chapter
only presents one acquisition function, others may help improve results. For ex-
ample, in addition to uncertainty and suitability, we could add a similarity term or
energy term, to optimize suggested molecules and reduce error.

All 3 of the above approaches to HTVS gave promising results, and should be
widely applicable beyond the specific molecular characteristics investigated here.
Each results chapter has a short discussion of future work at the end, but a broader
outlook is presented here.



Chapter 6. Conclusion 124

6.2 Outlook

Of the 3 results chapters presented in this work, Chapter 4 is perhaps the most ap-
plicable to other studies. The xTB family of methods is increasing in popularity due
to its computational efficiency, and is often used in HTVS studies. While this thesis
calibrated xTB-sTDA excited state data, it is absolutely possible to expand the ML
calibration technique to other properties. As shown, the calibration methodology
is flexible, as the reference was easily switched from TD-DFT to CC2 values. Other
desired properties, such as ground state energy, HOMO/LUMO gap, Fermi-level,
vibrational frequencies, thermochemical properties, 3D structure, etc. can also be
calibrated, given TD-DFT (or other) reference values. Note that the number of dat-
apoints required may be larger than the training set used in this work, depending
on the complexity of the desired property. This idea of ML calibration of xTB is not
completely unheard of – in the generation of the xTB methods, an extensive param-
eterization is required, which uses a fit on a large dataset. While not specified as
an ML calibration, a high-order fit is functionally similar. An ML fit may not be as
generalizable as the xTB parameterization, but would help increase accuracy of a
desired property.

The methodology presented in Chapter 5 is also widely applicable. Most existing
active learning studies for chemical exploration use TD-DFT for data labeling. How-
ever, this limits the comparison of different AL workflows and techniques. The pri-
mary value of the novel proposed workflow is its speed, allowing testing of various
acquisition functions. Using a workflow similar to the one proposed in this work,
other studies could quickly get a sense of the size of the candidate space, note po-
tential optimizations to the AL workflow (i.e. adding terms to the acquisition func-
tion), and get a sense of how many molecules are required for low MAE predictions.
Then, with an optimized AL workflow, they could return to a high-accuracy data
labeling technique. Having a high-speed AL workflow also allows rapid screening
of massive databases, i.e. >10M molecules, that would be impossible to screen with
conventional TD-DFT based AL workflows.

The results from Chapter 3 are the most applicable portion of that work. A new
triplet energy database is generated with ML, and can be used for additional materi-
als screening purposes beyond NIR-TTA materials, for example UV-to-Vis SF mate-
rials. The GB-GA update presented also demonstrates the versatility of the method.
The algorithm had several scoring functions already implemented, including par-
tition coefficient and xTB-sTDA based absorption (without xTB ground state opti-
mization). Adding the ML models for S1 and T1 energies shows that the algorithm
can work with a variety of scoring functions.

Beyond applying the methods/data generated to other studies, there is also po-
tential for expanding the scope of the study itself. As mentioned in the Introduction,
this study only considers vertical excitation energies. However, excited state relax-
ation may be important for some systems. Adding this phenomenon would allow
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vertical emission and adiabatic energy calculations. There are a few ideas to incorpo-
rate this in a HTVS workflow. In this study, since xTB-sTDA only calculates vertical
excitation, for consistency the TD-DFT workflow was standardized to this setting as
well. However, it is possible to have TD-DFT calculate the adiabatic energy (with
excited state relaxation) instead, and then calibrate the xTB-sTDA vertical excitation
energy against the TD-DFT adiabatic energy. Or, taking it a step further, TD-DFT
could calculate the vertical emission using the excited state relaxed structure, and
xTB-sTDA vertical excitation could be calibrated against that. Alternatively, a sepa-
rate ML calibration could be generated for excited state structure relaxation, compar-
ing the xTB-generated structure against the TD-DFT relaxed structure. Then, using
the ML-calibrated structure, a single-point xTB-sTDA calculation could be done to
get the vertical emission energy. In general, as seen, there are several options for
incorporating excited state dynamics into the xTB-ML workflow, which could be the
topic of extensive future research. The main question is its compatibility with HTVS,
since adding additional TD-DFT calculations would increase computation time.

The other potential expansion of scope is incorporating efficiency loss into the
HTVS workflows. As discussed earlier, this study focuses on optimizing energy
level alignment to reduce energy loss, ensuring the emitted photon is essentially
twice the energy of the two absorbed photons (for TTA). The other major loss mech-
anism for TTA is efficiency loss, reducing the probability that an absorbed photon
will be re-emitted. This is composed of several terms: oscillator strength (OS) from
ground to excited state, intersystem crossing (ISC) from singlet to triple states in
the sensitizer, triplet-triplet energy transfer (TTET) from sensitizer to emitter, and
triplet triplet annihilation (TTA) between two excited emitters. OS is the probabil-
ity of absorption and is already calculated with sTDA/TDDFT. ISC is a function of
spin-orbit coupling (SOC), which is calculable from excited-state singlet and triplet
wavefunctions. For example, PySOC160 calculates SOC using outputs from Gaussian
or DFTB+. TTET and TTA are forms of Dexter energy transfer, which is a function
of wavefunction and spectral overlap, so again is calculable. The main question is
whether these calculations can be included in a HTVS workflow, or whether they
are too expensive. Regardless, these calculations should at least be conducted on
the molecules suggested in this study, to see if any low energy-loss, high-efficiency
molecules exist.

Overall, we hope the combination of high-throughput computational chemistry
and machine learning presented in this study will spark further investigation and
help improve the accuracy of high-throughput techniques through data-driven ap-
proaches. As is evident, various applications exist, and we are excited to see where
this work goes.
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Appendix A

Supplementary Information

A.1 Conventional ML for AL

The following plot shows a histogram of S1 errors (predicted vs. true) using a ran-
domly sampled 500k training set tested on 350k molecules.

FIGURE A.1: Histogram of S1 errors, for ML model trained on 500k randomly sam-
pled molecules and tested on 350k molecules.

A.2 Molecular data for identified chromophores

A.2.1 Strict NIR bounds

Table A.1 shows the identified chromophores using strict NIR bounds. S1, T1, and
FOM refer to the predicted values using the AL-ML model.

A.2.2 Loose NIR bounds

Table A.2 shows the identified chromophores using loose NIR bounds. S1, T1, and
FOM refer to the predicted values using the AL-ML model.
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TABLE A.1: AL-ML candidates using strict NIR bounds

SMILES S1 T1 FOM
S1

TDDFT
T1

TDDFT
FOM

TDDFT
type

[CH2-]N1CCCC2C1CCCC2 1.121 1.101 0.983 1.156 1.114 0.964 sens

CCC1=NC=C2N1CCN(C2)[CH2-] 1.174 1.142 0.973 1.161 1.156 0.996 sens

C1(=C(NC(=O)NC1=O)N)N=O 2.003 1.004 0.994 1.95 1.023 0.911 emit

CC(C)C1=C(C2=NC(=O)N=C2C=C1)C(=O)O 2.135 1.072 0.991 2.124 1.103 0.928 emit

C1=C(C(=CC2=NC(=O)N=C21)OC(=O)O)N 2.155 1.096 0.968 2.101 1.078 0.95 emit

C1N=C2C(=CC=C2S1)N 2.361 1.205 0.959 1.964 0.996 0.972 emit

C1=CC=C2C(=C1)NC3=CC=CC(=O)C3=[N+]2[O-] 2.007 1.039 0.934 1.96 1.024 0.918 emit

C1=C[N+](=O)C(=O)C(=O)N1 1.963 1.027 0.916 2.027 1.039 0.953 emit

TABLE A.2: AL-ML candidates using loose NIR bounds

SMILES S1 T1 FOM
S1

TDDFT
T1

TDDFT
FOM

TDDFT
type

[CH2-]N1C[C@H]2CCN[C@H]2C1 1.236 1.223 0.989 1.09 1.083 0.994 sens

[CH2-]N1CCCC2C1CCCC2 1.121 1.101 0.983 1.156 1.114 0.964 sens

CCOC[C@@H]1CCN1[CH2-] 1.272 1.249 0.983 1.097 1.091 0.995 sens

CCC1=NC=C2N1CCN(C2)[CH2-] 1.174 1.142 0.973 1.161 1.156 0.996 sens

[B](C)C1=C2C(=CC=C1)N=CC=N2 1.317 1.276 0.969 1.177 1.177 1.0 sens

[CH2-]N(CCC#N)CCC1=CC=CC=C1 1.369 1.319 0.965 1.165 1.162 0.998 sens

CC(C1(CCN(CC1)[CH2-])O)(F)F 1.286 1.226 0.954 1.199 1.169 0.975 sens

C1(=C(NC(=O)NC1=O)N)N=O 2.003 1.004 0.994 1.95 1.023 0.911 emit

CC(C)C1=C(C2=NC(=O)N=C2C=C1)C(=O)O 2.135 1.072 0.991 2.124 1.103 0.928 emit

C1=C(C(=CC2=NC(=O)N=C21)OC(=O)O)N 2.155 1.096 0.968 2.101 1.078 0.95 emit

C1N=C2C(=CC=C2S1)N 2.361 1.205 0.959 1.964 0.996 0.972 emit

C1=CC=C2C(=C1)NC3=CC=CC(=O)C3=[N+]2[O-] 2.007 1.039 0.934 1.96 1.024 0.918 emit

CC1=NN2C(=NN(C2=C1N=O)C)C 1.685 0.879 0.921 1.918 1.002 0.918 emit

C1=C[N+](=O)C(=O)C(=O)N1 1.963 1.027 0.916 2.027 1.039 0.953 emit
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A.3 ML model architectures

For DeepChem’s GCN, a channel width of 64x64 was used for the graph convolu-
tional layers, a channel width of 128 was used for the atom level dense layer, 75 atom
features were created, a batch size of 100 was used, and a dropout of 0.2 was used.147

For DeepChem’s MPNN, 75 features per atom were used, 14 features per atom
pair were used, number of convolution depths in the corresponding hidden layer
was 100, and a dropout of 0.2 was used.148

For Chemprop’s MPNN, the hyperparameters used were: hidden size of 300,
depth of 3, number of feed-forward layers of 2, and dropout of 0.123

A.4 MOPSSAM S1 comparison

FIGURE A.2: Comparison of S1 energies calculated independently in this work vs.
S1 energies calculated by Wilbraham et al. [mopssam], showing great agreement in

results.

A.5 xTB-ML expanded training sets results
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FIGURE A.3: Plot of xTB calibration of the 143 MOPSSAM molecules for (a) S1 and
(b) T1 energies. Red dots are original data with no calibration, green dots are linearly
calibrated data, and blue dots are calibrated with ML. Training data was the 22.5k
molecules in SCOP-PCQC + SCOP-PCQC-lowS1 + QM-symex-10k, and test data was
the 143 molecules shown here. Inlaid boxes show quantitative measurements of ac-

curacy for original, linearly calibrated, and ML calibrated data.

FIGURE A.4: Plot of xTB calibration of the 143 MOPSSAM molecules for (a) S1 and
(b) T1 energies. Training data was the 78k molecules in SCOP-PCQC + SCOP-PCQC-

ALS1 + QM-symex-10k, and test data was the 143 molecules shown here.
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FIGURE A.5: Plot of xTB calibration of the 143 MOPSSAM molecules for (a) S1 and (b)
T1 energies. Training data was the 127k molecules in SCOP-PCQC + SCOP-PCQC-

ALT1 + QM-symex-10k, and test data was the 143 molecules shown here.

FIGURE A.6: Plot of xTB calibration of the 143 MOPSSAM molecules for (a) S1 and (b)
T1 energies. Training data was the 182k molecules in SCOP-PCQC + SCOP-PCQC-
ALS1 + SCOP-PCQC-ALT1 + QM-symex-10k, and test data was the 143 molecules

shown here.
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FIGURE A.7: Plot of xTB calibration of the 143 MOPSSAM molecules for (a) S1 and (b)
T1 energies. Training data was the 138k molecules in SCOP-PCQC + QM-symex-10k

+ QM-symex, and test data was the 143 molecules shown here.

FIGURE A.8: Plot of xTB calibration of the 143 MOPSSAM molecules for (a) S1 and (b)
T1 energies. Training data was the 301k molecules in SCOP-PCQC + SCOP-PCQC-
ALS1 + SCOP-PCQC-ALT1 + QM-symex-10k + QM-symex, and test data was the 143

molecules shown here.
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A.6 Applying xTB-ML to other functionals and methods
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(a) (b)

(c) (d)

(e)

FIGURE A.9: Results of applying xTB-ML to other computational chemistry tech-
niques: (a) ZINDO in QM7b and (b) CC2 in QM8, and TD-DFT functionals: (c)
PBE0/def2-SVP in QM8, (d) PBE0/def2-TZVP in QM8, and (e) CAM-B3LYP/def2-

TZVP in QM8.



134

Bibliography

(1) Imperial College Research Computing Service, DOI: 10.14469/hpc/2232.

(2) Kannan, N.; Vakeesan, D. Renewable and Sustainable Energy Reviews 2016, 62,
Publisher: Elsevier Ltd, 1092–1105.

(3) Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A. A.; Kim, K.-H. Renewable and
Sustainable Energy Reviews 2018, 82, 894–900.

(4) Solangi, K. H.; Islam, M. R.; Saidur, R.; Rahim, N. A.; Fayaz, H. Renewable and
Sustainable Energy Reviews 2011, 15, Publisher: Pergamon, 2149–2163.

(5) Mekhilef, S.; Saidur, R.; Safari, A. Renewable and Sustainable Energy Reviews
2011, 15, Publisher: Pergamon, 1777–1790.

(6) Kim, H.; Park, E.; Kwon, S. J.; Ohm, J. Y.; Chang, H. J. Renewable Energy 2014,
66, 523–531.

(7) Burnett, D.; Barbour, E.; Harrison, G. P. Renewable Energy 2014, 71, 333–343.

(8) Fthenakis, V.; Mason, J. E.; Zweibel, K. Energy Policy 2009, 37, 387–399.

(9) Sharma, N. K.; Tiwari, P. K.; Sood, Y. R. Renewable and Sustainable Energy Re-
views 2012, 16, 933–941.

(10) Liu, L. q.; Wang, Z. x.; Zhang, H. q.; Xue, Y. c. Renewable and Sustainable Energy
Reviews 2010, 14, Publisher: Pergamon, 301–311.

(11) Bahadori, A.; Nwaoha, C. Renewable and Sustainable Energy Reviews 2013, 18,
Publisher: Pergamon, 1–5.

(12) Dambhare, M. V.; Butey, B.; Moharil, S. V. Journal of Physics: Conference Series
2021, 1913, Publisher: IOP Publishing, 012053.

(13) Parida, B.; Iniyan, S.; Goic, R. Renewable and Sustainable Energy Reviews 2011,
15, 1625–1636.

(14) Shubbak, M. H. Renewable and Sustainable Energy Reviews 2019, 115, 109383.

(15) Gul, M.; Kotak, Y.; Muneer, T. Energy Exploration & Exploitation 2016, 34, Pub-
lisher: SAGE Publications Ltd STM, 485–526.

(16) Nayak, P. K.; Mahesh, S.; Snaith, H. J.; Cahen, D. Nature Reviews Materials
2019, 4, Bandiera_abtest: a Cg_type: Nature Research Journals Number: 4
Primary_atype: Research Publisher: Nature Publishing Group Subject_term:
Semiconductors;Solar cells;Solar energy and photovoltaic technology Sub-
ject_term_id: semiconductors;solar-cells;solar-energy-and-photovoltaic-technology,
269–285.



Bibliography 135

(17) NREL Best Research-Cell Efficiency Chart, en, 2021.

(18) Jena, A. K.; Kulkarni, A.; Miyasaka, T. Chemical Reviews 2019, 119, Publisher:
American Chemical Society, 3036–3103.

(19) Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G. Chemical Reviews 2020,
120, Publisher: American Chemical Society, 7867–7918.

(20) Lee, T. D.; Ebong, A. U. Renewable and Sustainable Energy Reviews 2017, 70,
Publisher: Elsevier Ltd, 1286–1297.

(21) Kaur, N.; Singh, M.; Pathak, D.; Wagner, T.; Nunzi, J. M. Synthetic Metals 2014,
190, 20–26.

(22) Rühle, S. Solar Energy 2016, 130, 139–147.

(23) Day, J.; Senthilarasu, S.; Mallick, T. K. Renewable Energy 2019, 132, 186–205.

(24) Dimroth, F.; Kurtz, S. MRS Bulletin 2007, 32, 230–235.

(25) Philipps, S. P.; Bett, A. W.; Horowitz, K.; Kurtz, S. Current Status of Concentra-
tor Photovoltaic (CPV) Technology; tech. rep. NREL/TP–5J00-65130, 1351597;
2015, NREL/TP–5J00–65130, 1351597.

(26) Ferry, D. K.; Goodnick, S. M.; Whiteside, V. R.; Sellers, I. R. Journal of Applied
Physics 2020, 128, Publisher: American Institute of Physics, 220903.

(27) Peters, I. M.; Sofia, S.; Mailoa, J.; Buonassisi, T. RSC Advances 2016, 6, Pub-
lisher: The Royal Society of Chemistry, 66911–66923.

(28) McKenna, B.; Evans, R. C. Advanced Materials 2017, 29, 1606491–1606491.

(29) Huang, X.; Han, S.; Huang, W.; Liu, X. Chemical Society Reviews 2013, 42, Pub-
lisher: Royal Society of Chemistry, 173–201.

(30) Joubert, M.-F. Optical Materials 1999, 11, 181–203.

(31) Auzel, F. Chemical Reviews 2004, 104, Publisher: American Chemical Society,
139–174.

(32) Haase, M.; Schäfer, H. Angewandte Chemie International Edition 2011, 50, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201005159, 5808–5829.

(33) LaCount, M. D.; Weingarten, D.; Hu, N.; Shaheen, S. E.; van de Lagemaat,
J.; Rumbles, G.; Walba, D. M.; Lusk, M. T. The Journal of Physical Chemistry A
2015, 119, Publisher: American Chemical Society, 4009–4016.

(34) Wang, J.; Ming, T.; Jin, Z.; Wang, J.; Sun, L.-D.; Yan, C.-H. Nature Communica-
tions 2014, 5, Bandiera_abtest: a Cg_type: Nature Research Journals Num-
ber: 1 Primary_atype: Research Publisher: Nature Publishing Group Sub-
ject_term: Inorganic chemistry;Solar cells;Solar energy and photovoltaic tech-
nology Subject_term_id: inorganic-chemistry;solar-cells;solar-energy-and-photovoltaic-
technology, 5669.

(35) Zhao, J.; Ji, S.; Guo, H. RSC Advances 2011, 1, Publisher: The Royal Society of
Chemistry, 937–950.



Bibliography 136

(36) Simon, Y. C.; Weder, C. Journal of Materials Chemistry 2012, 22, Publisher: The
Royal Society of Chemistry, 20817–20830.

(37) Couteau, C. Contemporary Physics 2018, 59, Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/00107514.2018.1488463, 291–304.

(38) Ferro, S. M.; Wobben, M.; Ehrler, B. Materials Horizons 2021, 8, Publisher: The
Royal Society of Chemistry, 1072–1083.

(39) Nozik, A. J. Chemical Physics Letters 2008, 457, 3–11.

(40) Smith, M. B.; Michl, J. Chemical Reviews 2010, 110, Publisher: American Chem-
ical Society, 6891–6936.

(41) Sasikumar, D.; John, A. T.; Sunny, J.; Hariharan, M. Chemical Society Reviews
2020, 49, Publisher: The Royal Society of Chemistry, 6122–6140.

(42) Felter, K. M.; Grozema, F. C. The Journal of Physical Chemistry Letters 2019, 10,
Publisher: American Chemical Society, 7208–7214.

(43) Ito, S.; Nagami, T.; Nakano, M. Journal of Photochemistry and Photobiology C:
Photochemistry Reviews 2018, 34, 85–120.

(44) Feng, X.; Casanova, D.; Krylov, A. I. The Journal of Physical Chemistry C 2016,
120, Publisher: American Chemical Society, 19070–19077.

(45) Ni, W.; Gurzadyan, G. G.; Zhao, J.; Che, Y.; Li, X.; Sun, L. The Journal of Physical
Chemistry Letters 2019, 10, Publisher: American Chemical Society, 2428–2433.

(46) Zirzlmeier, J.; Lehnherr, D.; Coto, P. B.; Chernick, E. T.; Casillas, R.; Basel, B. S.;
Thoss, M.; Tykwinski, R. R.; Guldi, D. M. Proceedings of the National Academy of
Sciences 2015, 112, Publisher: National Academy of Sciences Section: Physical
Sciences, 5325–5330.

(47) Catti, L.; Narita, H.; Tanaka, Y.; Sakai, H.; Hasobe, T.; Tkachenko, N. V.; Yoshizawa,
M. Journal of the American Chemical Society 2021, 143, Publisher: American
Chemical Society, 9361–9367.

(48) Zirzlmeier, J.; Casillas, R.; Reddy, S. R.; Coto, P. B.; Lehnherr, D.; Chernick,
E. T.; Papadopoulos, I.; Thoss, M.; Tykwinski, R. R.; Guldi, D. M. Nanoscale
2016, 8, Publisher: The Royal Society of Chemistry, 10113–10123.

(49) Walker, B. J.; Musser, A. J.; Beljonne, D.; Friend, R. H. Nature Chemistry 2013,
5, Bandiera_abtest: a Cg_type: Nature Research Journals Number: 12 Pri-
mary_atype: Research Publisher: Nature Publishing Group Subject_term: Chem-
ical physics;Reaction kinetics and dynamics;Materials chemistry;Optical spec-
troscopy Subject_term_id: chemical-physics;kinetics-and-dynamics;materials-
chemistry;spectroscopy, 1019–1024.

(50) Liu, H.; Wang, Z.; Wang, X.; Shen, L.; Zhang, C.; Xiao, M.; Li, X. Journal of Ma-
terials Chemistry C 2018, 6, Publisher: The Royal Society of Chemistry, 3245–
3253.



Bibliography 137

(51) Stern, H. L.; Musser, A. J.; Gelinas, S.; Parkinson, P.; Herz, L. M.; Bruzek, M. J.;
Anthony, J.; Friend, R. H.; Walker, B. J. Proceedings of the National Academy of
Sciences 2015, 112, Publisher: National Academy of Sciences Section: Physical
Sciences, 7656–7661.

(52) Fallon, K. J. et al. Journal of the American Chemical Society 2019, 141, Publisher:
American Chemical Society, 13867–13876.

(53) El Bakouri, O.; Smith, J. R.; Ottosson, H. Journal of the American Chemical Soci-
ety 2020, 142, Publisher: American Chemical Society, 5602–5617.

(54) Ye, C.; Zhou, L.; Wang, X.; Liang, Z. Physical Chemistry Chemical Physics 2016,
18, Publisher: The Royal Society of Chemistry, 10818–10835.

(55) Singh-Rachford, T. N.; Castellano, F. N. Coordination Chemistry Reviews 2010,
254, 2560–2573.

(56) Manna, M. K.; Shokri, S.; Wiederrecht, G. P.; Gosztola, D. J.; Ayitou, A. J.-L.
Chemical Communications 2018, 54, Publisher: The Royal Society of Chemistry,
5809–5818.

(57) Bharmoria, P.; Bildirir, H.; Moth-Poulsen, K. Chemical Society Reviews 2020, 49,
Publisher: The Royal Society of Chemistry, 6529–6554.

(58) Baluschev, S.; Yakutkin, V.; Miteva, T.; Avlasevich, Y.; Chernov, S.; Aleshchenkov,
S.; Nelles, G.; Cheprakov, A.; Yasuda, A.; Müllen, K.; Wegner, G. Angewandte
Chemie International Edition 2007, 46, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200700414,
7693–7696.

(59) Baluschev, S.; Yakutkin, V.; Miteva, T.; Wegner, G.; Roberts, T.; Nelles, G.; Ya-
suda, A.; Chernov, S.; Aleshchenkov, S.; Cheprakov, A. New Journal of Physics
2008, 10, Publisher: IOP Publishing, 013007.

(60) Deng, F.; Sommer, J. R.; Myahkostupov, M.; Schanze, K. S.; Castellano, F. N.
Chemical Communications 2013, 49, Publisher: The Royal Society of Chemistry,
7406–7408.

(61) Mahboub, M.; Huang, Z.; Tang, M. L. Nano Letters 2016, 16, Publisher: Amer-
ican Chemical Society, 7169–7175.

(62) Haruki, R.; Sasaki, Y.; Masutani, K.; Yanai, N.; Kimizuka, N. Chemical Commu-
nications 2020, 56, Publisher: The Royal Society of Chemistry, 7017–7020.

(63) Radiunas, E.; Raišys, S.; Juršėnas, S.; Jozeliūnaitė, A.; Javorskis, T.; Šinke-
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